Genotype by environment interaction (GEI) imposes an influence onthe yield stability of a genotype tested under erratic environments. The present experiment was carried out at six sites viz; Multan, Faisalabad, Khanpur, Bahawalpur, Vehari and Sahiwal in the Punjab province during Kharif 2020-21. The main objectives of the study were to quantifythe GEI component of variation and to assess the yield stability of recently bred upland cotton strains across test environments. Twenty-one cotton strains were sown according to a randomized complete block design (RCBD) with three replications. Additive main effects and multiplicative interaction (AMMI) analysis illustrated that additive effects of genotypes, environments and multiplicative effects (GEI) were significant at (p<0.01). Test sites accounted for the biggest share (74.1%) of the variability, followed by GEI (17.2%) and strains (8.7%), respectively. The first four interaction principal components (IPC) were significant at (p<0.01) wherein the first two IPCs captured (68.4%) of the GEI cumulatively. Strain ST06 (FH-492) won four environs and was declared the overall winner of this trial. The Vehari location was the best location for cotton multi-environment trials (MET) due to the bearing of minimum IPC-1 score. The correlation coefficient between strains in IPC1 was (0.81) and sites in PC1 was (0.76). Strain ST08 (BH-224) bears a yield edge of (84.5%) over general winner strain ST (06) FH-492 at the site of Multan due to micro adaptations. Genotype selection index (GSI: A non-parametric approach to determine yield stability) discriminated ST02 (WEAL-AG-10), ST05 (MNH-1050), ST09 (VH-418) and ST19 (UAM-20) as stable yielder strains bearing the lowest GSI value (11). These strains are important in boosting cotton production hence, their release for general cultivation may be sought from the authorized forum.
Low availability of native soil phosphorus (P) is a major constraint limiting sustainable crop production especially in alkaline calcareous soils. Application of organic manure in this regard has gained attention of the scientific community. Yet, the potential of fermented animal manure in improving P use efficiency and subsequent crop yield has not been assessed. This pot experiment was designed to study the performance of wheat under application of non-fermented and fermented animal manure in combination with 0, 45 or 90 kg·ha−1 phosphorus in the form of diammonium phosphate (DAP). Results show that non-fermented animal manure and split dose of phosphorus fertilizer improved plant quantitative attributes including plant growth, yield and nutrient uptake parameters. However, the placement of fermented animal manure combined with the full amount of P (90 kg·ha−1) fertilizer gave the mean highest value of fertile tillers per pot (12) and their grain yield (5.2 g). Moreover, plant physiological parameters were enhanced with fermented animal manure and the recommended rate of P fertilizer compared with the control. Likewise, the biochemical properties of wheat grain such as fat, fiber, ash and protein contents were increased by 1.24, 2.26, 1.47 and 11.2%, respectively, in plants receiving fermented animal manure and P fertilizer (90 kg·ha−1). Furthermore, co-application of fermented animal manure with P (90 kg·ha−1) into soil improved phosphorus uptake from 0.72 to 1.25 g·pot−1, phosphorus usage efficiency from 0.715 to 0.856 mg·pot−1, and soil phosphorus extent from 7.58 to 16.1% over controls. It is thus inferred that this new approach resulted in release of P from fermented manure that not only reduced fixation but also enhanced the growth, yield, physiology and nutrient uptake in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.