Inspired by the metal–sulfur (M‐S) linkages in the nitrogenase enzyme, here we show a surface modification strategy to modulate the electronic structure and improve the N2 availability on a catalytic surface, which suppresses the hydrogen evolution reaction (HER) and improves the rate of NH3 production. Ruthenium nanocrystals anchored on reduced graphene oxide (Ru/rGO) are modified with different aliphatic thiols to achieve M‐S linkages. A high faradaic efficiency (11 %) with an improved NH3 yield (50 μg h−1 mg−1) is achieved at −0.1 V vs. RHE in acidic conditions by using dodecanethiol. DFT calculations reveal intermediate N2 adsorption and desorption of the product is achieved by electronic structure modification along with the suppression of the HER by surface modification. The modified catalyst shows excellent stability and recyclability for NH3 production, as confirmed by rigorous control experiments including 15N isotope labeling experiments.
The electrochemical nitrogen reduction reaction (NRR) provides a sustainable alternative to the Haber−Bosch process for ammonia (NH 3 ) production. Transition metal catalysts have poor NRR performance due to the highly competitive hydrogen evolution reaction and the scaling relation between inert dinitrogen (N 2 ) and other reaction intermediates. Owing to the enhanced active sites and the anomalous quantum size effect, single-atom catalysts (SACs) have been proven to be effective in overcoming these limitations. Inspired by our understanding of metal− sulfur (M−S) linkages in the nitrogenase enzyme, we have modulated the electronic structure of iron by tethering to sulfur in a mesoporous carbon matrix. Theoretical calculations identified enhanced electron transfer and flexible coordination as important features of Fe−S−C linkages responsible for the improved NRR performance, which is achieved due to enhanced N 2 interaction with localized charge density sites formed by Fe−S−C linkages. A high faradaic efficiency (6.1 ± 0.9%) with an improved rate of NH 3 formation (8.8 ± 1.3 μg h −1 mg −1 ) is obtained on the best-performing sample at −0.1 V versus RHE. Our work reveals the importance of M−S linkages for improved NRR performance and provides a strategy for the rational catalyst design.
Selective conversion of aromatic alcohols into corresponding aldehydes is important from energy and environmental stance. Here, we describe highly selective (>99%) and efficient conversion (>99%) of aromatic alcohols (e.g., 4-methoxybenzyl alcohol and 4-nitrobenzyl alcohol) into their corresponding aldehydes in the presence of Pt-modified nanoporous hierarchical Bi2WO6 spheres in water under simulated sunlight at ambient conditions. Overoxidation of p-anisaldehyde, formed during photooxidation process, was not observed until comprehensive alcohol oxidation was attained. Furthermore, the catalyst showed substantial oxidation under dark and course of conversion was different than that of under light. Dependency of alcohol oxidation on substrate concentration, photocatalyst amount, and Pt loading was studied. The effect of various radical scavengers was investigated, and the rate-determining step was elucidated. It has been envisaged that the reduction site of semiconductor photocatalysts plays more decisive role in determining the selectivity as alcohol preferably get oxidized over that of water. Furthermore, the chemical stability and recyclability of the photocatalyst were investigated.
Due to exciting catalytic activity and selectivity, tailoring of nanocatalysts consisting of preferred crystal facets and desired structural properties remains at the forefront of materials engineering. A facile one-step nonhydrolytic solvothermal synthesis of a nanocomposite of reduced graphene oxide and one-dimensional nitrogen-doped Nb2O5 (N-NbOx) with exposed ⟨001⟩ facet is described. Triethylamine performed the dual role as nitrogen source and capping agent to control the size and unidirectional growth of Nb2O5 nanocrystallites. The nanocomposite showed efficient visible-light-mediated (λ > 420 nm) water splitting in a photoelectrochemical cell. A plausible mechanism for the formation of N-NbOx nanorods and improved photoelectrochemical efficacy in terms of their oriented growth is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.