Regulation of spatio-temporal expression patterns of stress tolerance associated plant genes is an essential component of the stress responses. Eukaryotes assign a large amount of their genome to transcription with multiple transcription factors (TFs). Often, these transcription factors fit into outsized gene groups which, in several cases, exclusively belong to plants. Basic leucine zipper domain (bZIP) transcription factors regulate vital processes in plants and animals. In plants, bZIPs are implicated in numerous fundamental processes like seed development, energy balance, and responses to abiotic or biotic stresses. Systematic analysis of the information obtained over the last two decades disclosed a constitutive role of bZIPs against biotic stress. bZIP TFs are vital players in plant innate immunity due to their ability to regulate genes associated with PAMP-triggered immunity, effector-triggered immunity, and hormonal signaling networks. Expression analysis of studied bZIP genes suggests that exploration and functional characterization of novel bZIP TFs in planta is helpful in improving crop resistance against pathogens and environmental stresses. Our review focuses on major advancements in bZIP TFs and plant responses against different pathogens. The integration of genomics information with the functional studies provides new insights into the regulation of plant defense mechanisms and engineering crops with improved resistance to invading pathogens. Conclusively, succinct functions of bZIPs as positive or negative regulator mediate resistance to the plant pathogens and lay a foundation for understanding associated genes and TFs regulating different pathways. Moreover, bZIP TFs may offer a comprehensive transgenic gizmo for engineering disease resistance in plant breeding programs.
The responses of pepper (Capsicum annuum) plants to inoculation with the pathogenic bacterium Ralstonia solanacearum and to high-temperature-high-humidity (HTHH) conditions were previously found to be coordinated by the transcription factors CaWRKY6 and CaWRKY40; however, the underlying molecular mechanism was unclear. Herein, we identified and functionally characterized CaHsfB2a, a nuclear-localized heat shock factor involved in pepper immunity to R. solanacearum inoculation (RSI) and tolerance to HTHH. CaHsfB2a is transcriptionally induced in pepper plants by RSI or HTHH and by exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), or abscisic acid (ABA). Virus-induced gene silencing (VIGS) of CaHsfB2a significantly impaired pepper immunity to RSI, hampered HTHH tolerance, and curtailed expression of immunity- and thermotolerance-associated marker genes such as CaHIR1, CaNPR1, CaABR1, and CaHSP24. Likewise, transient overexpression of CaHsfB2a in pepper leaves induced hypersensitive response (HR)-like cell death and H2O2 accumulation and upregulated the above mentioned marker genes as well as CaWRKY6 and CaWRKY40. Chromatin immunoprecipitation (ChIP) and microscale thermophoresis (MST) analysis revealed that CaHsfB2a bound the promoters of both CaWRKY6 and CaWRKY40. In a parallel experiment, we determined by ChIP-PCR and MST that CaHsfB2a was regulated directly by CaWRKY40 but indirectly by CaWRKY6. Cumulatively, our results suggest that CaHsfB2a positively regulates plant immunity against RSI and tolerance to HTHH, via transcriptional cascades and positive feedback loops involving CaWRKY6 and CaWRKY40.
PcINF1 was previously found to induce pepper defense response by interacting with SRC2-1, but the underlying mechanism remains uninvestigated. Herein, we describe the involvement of SGT1 in the PcINF1/SRC2-1-induced immunity. SGT1 was observed to be up-regulated by Phytophthora capsici inoculation and synergistically transient overexpression of PcINF1/SRC2-1 in pepper plants. SGT1-silencing compromised HR cell death, blocked H2O2 accumulation, and downregulated HR-associated and hormones-dependent marker genes’ expression triggered by PcINF1/SRC2-1 co-overexpression. The interaction between SRC2-1 and SGT1 was found by the yeast two hybrid system and was further confirmed by bimolecular fluorescence complementation and co-immunoprecipitation analyses. The SGT1/SRC2-1 interaction was enhanced by transient overexpression of PcINF1 and Phytophthora capsici inoculation, and SGT1-silencing attenuated PcINF1/SRC2-1 interaction. Additionally, by modulating subcellular localizations of SRC2-1, SGT1, and the interacting complex of SGT1/SRC2-1, it was revealed that exclusive nuclear targeting of the SGT1/SRC2-1 complex blocks immunity triggered by formation of SGT1/SRC2-1, and a translocation of the SGT1/SRC2-1 complex from the plasma membrane and cytoplasm to the nuclei upon the inoculation of P. capsici. Our data demonstrate that the SGT1/SRC2-1 interaction, and its nucleocytoplasmic partitioning, is involved in pepper’s immunity against P. capsici, thus providing a molecular link between Ca2+ signaling associated SRC2-1 and SGT1-mediated defense signaling.
Rice (Oryza sativa L.) feeds to two-third of the global population by serving as staple food. It is the main export commodity of several countries; thus, contributes towards foreign exchange earnings. Unfortunately, average global rice yield is far below than its genetic potential. Low nitrogen (N) use efficiency (NUE) is among the major reasons for low average yield. Current study evaluated the impact of nitrogen fertilizer application methods (conventional and deep placement) on growth, yield-related traits, chlorophyll contents, photosynthesis rate, agronomic N-use efficiency (ANUE), partial factors productivity of applied N (PFP) and economic returns of two different transplanted rice varieties (Basmati-515 and Super-Basmati). Fertilizer application methods significantly affected allometry, yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns. Deep placement of N-fertilizer (DPNF) observed better allometric traits, high chlorophyll contents, photosynthesis rate, ANUE, PFP, yield attributes and economic returns compared to conventional application of N-fertilizer (CANF). Similarly, Basmati-515 had better allometric and yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns than Super-Basmati. Regarding interactions among N-fertilizer application methods and rice varieties, Basmati-515 with DPNF resulted in higher chlorophyll contents, photosynthesis rate, ANUE, PFP, allometric and yield related traits and economic returns than CANF. The lowest values of these traits were observed for Super-Basmati with no application of N-fertilizer. Both varieties had better yield and economic returns with DPNF compared to CANF. It is concluded that DPNF improved yield, ANUE and economic returns; therefore, should be opted to improve productivity of transplanted fine rice. Nonetheless, lower nitrogen doses need to be tested for DPNF to infer whether it could lower N use in rice crop.
WRKY transcription factors (TFs) have been implicated in plant growth, development, and in response to environmental cues; however, the function of the majority of pepper WRKY TFs remains unclear. In the present study, we functionally characterized CaWRKY40b, a homolog of AtWRKY40, in pepper immunity. Ralstonia solanacearum inoculation (RSI) in pepper plants resulted in downregulation of CaWRKY40b transcript, and green fluorescent protein (GFP)-tagged CaWRKY40b was localized to the nuclei when transiently overexpressed in the leaves of Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of CaWRKY40b significantly decreased pepper’ susceptibility to RSI. Consistently, the transient over-expression of CaWRKY40b-SRDX (chimeric repressor version of CaWRKY40b) triggered cell death, as indicated by darker trypan blue and DAB staining. CaWRKY40b targets a number of immunity-associated genes, including CaWRKY40 JAR, RLK1, EIN3, FLS2, CNGIC8, CDPK13, and heat shock cognate protein 70 (HSC70), which were identified by ChIP-seq and confirmed using ChIP-real time PCR. Among these target genes, the negative regulator HSC70 was upregulated by transient overexpression of CaWRKY40b and downregulated by silencing of CaWRKY40b, whereas other positive regulators as well as two non-target genes, CaNPR1 and CaDEF1, were downregulated by the transient overexpression of CaWRKY40b and upregulated by CaWRKY40b silencing or transient overexpression of CaWRKY40b-SRDX. In addition, CaWRKY40b exhibited a positive feedback regulation at transcriptional level by directly targeting the promoter of itself. In conclusion, the findings of the present study suggest that CaWRKY40b acts as a negative regulator in pepper immunity against R. solanacearum by transcriptional modulation of a subset of immunity-associated genes; it also represses immunity in the absence of a pathogen, and derepresses immunity upon pathogen challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.