About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation. AbstractPurpose -This paper aims to investigate the effect of hexagonal boron nitride (hBN) nanoparticles on extreme pressure (EP) properties when used as an additive in lubricating oil. Design/methodology/approach -The nano-oil was prepared by dispersing an optimal composition of 0.5 vol. per cent of 70 nm hBN in SAE 15W-40 diesel engine oil using a sonication technique. The tribological testing was performed using a four-ball tribometer according to the ASTM standard. Findings -It was found that the nano-oil has a potential to decelerate the seizure point on the contact surfaces, where higher EP can be obtained. More adhesive wear was observed on the worn surfaces of ball bearing lubricated with SAE 15W-40 diesel engine oil as compared with the nano-oil lubrication. Originality/value -The results of the experimental studies demonstrated the potential of hBN as an additive for improving the load-carrying ability of lubricating oil.
An experimental investigation was conducted to investigate the potential of hexagonal boron nitride (hBN) nanoparticles as friction modifier and antiwear additive in engine oil. In this study, an optimal composition (0.5 vol.%) of 70 nm hBN nanoparticles was dispersed in SAE 15W-40 diesel engine oil by sonication technique. Sample was stabilized using 0.3 vol.% oleic acid as a surfactant. The tribological test was performed using a four-ball tribometer. Surface morphology and its chemical composition were carried out using a profilometer, Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDX). It was found that the optimized nano-oil could reduce the coefficient of friction and increase wear resistance, as compared with conventional diesel engine oil. Some adhesive and abrasive wear types were identified as predominant wear mechanisms.
Nanotechnology currently has an important role in reducing engine wear and improving fuel efficiency within engines using nanoparticle additives in engine oil. In this work, the effect of hexagonal boron nitride (hBN) and alumina (Al2O3) nanoparticle additives, on the tribological performance of SAE 15W40 diesel engine oil, was studied. A tribological test was conducted using a four-ball tribotester. The results show that the coefficient of friction (COF) and wear rate of the ball reduced significantly by dispersing hBN nanoparticle additives in SAE 15W40 diesel engine oil; compared to without or with Al2O3 nanoparticle additives. This is in accordance with the significant reduction of wear scar diameter and smoother worn surfaces observed on the balls.
Purpose This study aims is to investigate the correlation between tribological and mechanical properties of the fused filament fabrication 3D-printed acrylonitrile butadiene styrene (ABS) pin with different internal geometries. Design/methodology/approach The tribological properties were determined by a dry sliding test with constant test parameters, while the hardness and modulus of elasticity were determined by microhardness and compression tests. Findings Although the internal geometry of the pin sample slightly affects the coefficient of friction (COF) and the wear rate of the 3D-printed ABS, it was important to design a lightweight tribo-component by reducing the material used to save energy without compromising the strength of the component. The COF and wear rate values are relatively dependent on the elastic modulus. A 3D-printed ABS pin with an internal triangular flip structure was found to have the shortest run-in period and the lowest COF with high wear resistance. Abrasive wear and delamination are the predominant wear mechanisms involved. Research limitations/implications The findings are the subject of future research under various sliding conditions by investigating the synergistic effect of sliding speeds and applied loads to validate the results of this study. Originality/value The internal structure affects the mechanical properties and release stress concentration at the contact point, resulting in hypothetically low friction and wear. This approach may also reduce the weight of the parts without scarifying or at least preserving their preceding tribological performance. Therefore, based on our knowledge, limited studies have been conducted for the application of 3D printing in tribology, and most studies focused on improving their mechanical properties rather than correlating them with tribological properties that would benefit longer product lifespans. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0143/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.