Abstract-Elastic optical networks (EON) have been proposed to meet the network capacity and dynamicity challenges. Hardware and software resource optimization and re-configurability are key enablers for EONs. Recently, innovative multi-carrier transmission techniques have been extensively investigated to realize high capacity (Tb/s) flexible transceivers. In addition to standard telecommunication lasers, optical carrier generators based on optical frequency combs (OFC) have also been considered with expectations of reduced cost and inventory, improved spectral efficiency and flexibility. A wide range of OFC generation techniques have been proposed in the literature over the past few years. It is imperative to summarize the state of the art, compare and assess these diverse techniques from a practical perspective. In this survey, we identify salient features of optical multicarrier generators, review and compare these techniques both from a physical and network layer perspective. OFC demultiplexing/filtering techniques have also been reviewed. In addition to transmission performance, the impact of such sources on the network performance and real-world deployment strategies with reference to cost, power consumption, and level of flexibility have also been discussed. Field trials, integrated solutions, flexibility demonstrations are also reported. Finally, open issues and possible future directions that can lead to real network deployment are highlighted.
A multiflow transponder in flex-grid optical networks has recently been proposed as a transponder solution to generate multiple optical flows (or subcarriers). Multiflow transponders support high-rate super-channels (i.e., connection composed of multiple corouted subcarriers contiguous in the spectrum) and sliceability; i.e., flows can be flexibly associated to the incoming traffic requests, and, besides composing a super-channel, they can be directed toward different destinations. Transponders supporting sliceability are also called sliceable transponders or sliceable bandwidth variable transponders (SBVTs). Typically, in the literature, SBVTs have been considered composed of multiple laser sources (i.e., one for each subcarrier). In this paper, we propose and evaluate a novel multirate, multimodulation, and code-rate adaptive SBVT architecture. Subcarriers are obtained either through multiple laser sources (i.e., a laser for each subcarrier) or by exploiting a more innovative and cost-effective solution based on a multiwavelength source and micro-ring resonators (MRRs). A multiwavelength source is able to create several optical subcarriers from a single laser source. Then, cascaded MRRs are used to select subcarriers and direct them to the proper modulator. MRRs are designed and analyzed through simulations in this paper. An advanced transmission technique such as time frequency packing is also included. A specific implementation of a SBVT enabling an information rate of 400 Gb∕s is presented considering standard 100 GbE interfaces. A node architecture supporting SBVT is also considered. A simulation analysis is carried out in a flex-grid network. The proposed SBVT architecture with a multiwavelength source permits us to reduce the number of required lasers in the network.
An experimental demonstration of active stateful PCE for flexgrid networks is presented. The PCE enables elastic operations on established connections and, when required, performs hitless defragmentation of spectrum resources. Experimental assessment, including shifting of 400Gbps four sub-carrier superchannel is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.