Thalassemia is a genetic haematological disorder that arises due to defects in the α and β-globin genes. Worldwide, 0.3-0.4 million children are born with haemoglobinopathies per year. Thalassemic patients, as well as their families, face various serious clinical, socioeconomic , and psychosocial challenges throughout their life. Different therapies are available in clinical practice to minimize the suffering of thalassemic patients to some extent and potentially cure the disease. Predominantly, patients undergo transfusion therapy to maintain their haemoglobin levels. Due to multiple transfusions, the iron levels in their bodies are elevated. Iron overload results in damage to body organs, resulting in heart failure, liver function failure or endocrine failure, all of which are commonly observed. Certain drugs have been developed to enhance the expression of the γ-gene, which ultimately results in augmentation of fetal haemoglobin (HbF) levels and total haemoglobin levels in the body. However, its effectiveness is dependent on the genetic makeup of the individual patient. At present, allogeneic haematopoietic Stem Cell Transplantation (HSCT) is the only practically available option with a high curative rate. However, the outcome of HSCT is strongly influenced by factors such as age at transplantation, irregular iron chelation history before transplantation, histocompatibility, and source of stem cells. Gene therapy using the lentiglobin vector is the most recent method for cure without any mortality, graft rejection and clonal dominance issues. However, delayed platelet engraftment is being reported in some patients. Genome editing is a novel approach which may be used to treat patients with thalassemia; it makes use of targeted nucleases to correct the mutations in specific DNA sequences and modify the sequence to the normal wild-type sequence. To edit the genome at the required sites, CRISPR/Cas9 is an efficient and accurate tool that is used in various genetic engineering programs. Genome editing mediated by CRISPR/Cas9 has the ability to restore the normal β-globin function with minimal side effects. Using CRISPR/Cas9, expression of BCL11A can be downregulated along with increased production of HbF. However, these genome editing tools are still under in-vitro trials. CRISPR/Cas9 has can be used for precise transcriptional regulation, genome modification and epigenetic editing. Additional research is required in this regard, as CRISPR/Cas9 may potentially exhibit off-target activity and there are legal and ethical considerations regarding its use. Contents 1. Introduction 2. Therapeutic options for thalassemia 3. Gene-based therapies 4. Conclusions
Genetic factors contribute to antisocial and criminal behavior. Dopamine transporter DAT-1 (SLC6A3) and DRD2 gene for the dopamine-2 receptor are dopaminergic system genes that regulate dopamine reuptake and signaling, and may be part of the pathogenesis of psychiatric disorders including antisocial behaviors and traits. No previous studies have analyzed DAT-1 and DRD2 polymorphisms in convicted murderers, particularly from Indian subcontinent. In this study we investigated the association of 40 bp VNTR polymorphism of DAT-1 and Taq1 variant of DRD2 gene (rs1800479) with criminal behavior and self-reported aggression in 729 subjects, including 370 men in Pakistani prisons convicted of first degree murder(s) and 359 control men without any history of violence or criminal tendency. The 9R allele of DAT-1 VNTR polymorphism was more prevalent in convicted murderers compared with control samples, for either one or two risk alleles (OR = 1.49 and 3.99 respectively, P = 0.003). This potential association of DAT-1 9R allele polymorphism with murderer phenotype was confirmed assuming different genetic models of inheritance. However, no genetic association was found for DRD2 Taq1 polymorphism. In addition, a combined haplotype (9R-A2) of DAT-1 and DRD2 genes was associated with this murderer phenotype. Further, 9R allele of DAT-1 was also associated with response to verbal abuse and parental marital complications, but not with other measures pertinent to self-reported aggression. These results suggest that 9R allele, which may influence levels of intra-synaptic dopamine in the brain, may contribute to criminal tendency in this sample of violent murderers of Pakistani origin. Future studies are needed to replicate this finding in other populations of murderers and see if this finding extends to other forms of violence and lesser degrees of aggression.
The serotonin transporter (SLC6A4), 5-HT2A (HTR2A) and 5-HT2B (HTR2B) recepter genes, express proteins that are important regulators of serotonin reuptake and signaling, and thereby may contribute to the pathogenesis of aggressive criminal behavior. 370 sentenced murderers in Pakistani prisons and 359 men without any history of violence or criminal delinquency were genotyped for six candidate polymorphisms in SLC6A4, HTR2A and HTR2B genes. An association of higher expressing L/L and LA/LA variants of the 5-HTTLPR polymorphism was observed with homicidal behavior (bi-allelic: OR = 1.29, p = 0.016, tri-allelic: OR = 1.32, p = 0.015) and in the murderer group only with response to verbal abuse (OR = 2.11, p = 0.015), but not with other measures of self-reported aggression. L/L and LA/LA genotypes of the 5-HTTLPR polymorphism were associated with higher aggression scores on STAX1 scale of aggression compared to lower expressing genotypes (S/S, S/LG, LG/LG) in prison inmates. No associations were apparent for other serotonergic gene polymorphisms analyzed. Using the Braineac and GTEx databases, we demonstrated significant eQTL based functional effects for rs25531 in HTTLPR and other serotonergic polymorphisms analyzed in different brain regions and peripheral tissues. In conclusion, these findings implicate SLC6A4* HTTLPR as a major genetic determinant associated with criminal aggression. Future studies are needed to replicate this finding and establish the biologic intermediate phenotypes mediating this relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.