This paper measures the adhesion/cohesion force among asphalt molecules at nanoscale level using an Atomic Force Microscopy (AFM) and models the moisture damage by applying state-of-the-art Computational Intelligence (CI) techniques (e.g., artificial neural network (ANN), support vector regression (SVR), and an Adaptive Neuro Fuzzy Inference System (ANFIS)). Various combinations of lime and chemicals as well as dry and wet environments are used to produce different asphalt samples. The parameters that were varied to generate different asphalt samples and measure the corresponding adhesion/cohesion forces are percentage of antistripping agents (e.g., Lime and Unichem), AFM tips K values, and AFM tip types. The CI methods are trained to model the adhesion/cohesion forces given the variation in values of the above parameters. To achieve enhanced performance, the statistical methods such as average, weighted average, and regression of the outputs generated by the CI techniques are used. The experimental results show that, of the three individual CI methods, ANN can model moisture damage to lime- and chemically modified asphalt better than the other two CI techniques for both wet and dry conditions. Moreover, the ensemble of CI along with statistical measurement provides better accuracy than any of the individual CI techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.