Heat stress is one of the major threats to wheat production in many wheat-growing areas of the world as it causes severe yield loss at the reproductive stage. In the current study, 28 crosses were developed using 11 parental lines, including 7 female lines and 4 male testers following line × tester matting design in 2018–2019. Twenty-eight crosses along with their 11 parental lines were sown in a randomized complete block design in triplicate under optimal and heat stress conditions. Fifteen different morpho-physiological and grain quality parameters were recorded at different growth stages. Analysis of variance illustrated the presence of highly significant differences among wheat genotypes for all traits under both optimal and heat stress conditions. The results of combining ability unveiled the predominant role of non-additive gene action in the inheritance of almost all the studied traits under both conditions. Among parents, 3 parental lines WL-27, WT-39, and WL-57 showed good combining ability under both normal and heat stress conditions. Among crosses, WL-8 × WT-17, WL-37 × WT-17, WL-7 × WT-39, and WL-37 × WT-39 portrayed the highest specific combining ability effects for grain yield and its related traits under optimal as well as heat stress conditions. Biplot and cluster analysis confirmed the results of general and specific combining ability by showing that these wheat crosses belonged to a highly productive and heat tolerant cluster. Correlation analysis revealed a significantly positive correlation of grain yield with net photosynthetic rate, thousand-grain rate, and the number of grains per spike. The designated parental lines and their crosses were selected for future breeding programs in the development of heat resilient, climate-smart wheat genotypes.
The present study was done to develop and evaluate a matrix transdermal patch for bisoprolol fumarate. Different combinations of Eudragit RS 100 and HPMC E5 were used with polyethylene glycol 400 as a plasticizer on a polyvinyl alcohol backing layer by the solvent evaporation technique. The patches were evaluated for organoleptic characteristics and physicochemical parameters. Initial in vitro dissolution experiments were conducted to optimize formulation parameters prior to ex vivo skin permeation studies. Eudragit RS 100 and HPMC E5 (9:1) combination was studied for skin permeation because of the sustain release effect. The effect of control patch and permeation enhancer including Tween 80, propylene glycol, and DMSO were evaluated at 10%-40% concentration in the Franz diffusion cell using excised abdominal skin of rabbit. Different kinetic models were used to interpret the release kinetics and drug release mechanism. The patch M04-PE containing 40% Tween 80 had better sustained release effect and had closer flux to the desired flux. M04-PE followed the zero-order kinetics with super case II release drug mechanism.
Heat stress is a major environmental constraint in crop production, worldwide. Identification and selection of suitable cultivars and traits for high temperature tolerance is vital to produce heat resilient genotypes. To find out superior genotypes and plant parameters, 14 maize hybrids of local and exotic origin, were evaluated under heat stress conditions. Evaluation of maize genotypes was done for morphological, phenological and quality related traits i.e., days to 50% tasseling, days to 50% silking, plant height, cob height, cob length, thousand grain weight, protein contents, oil contents, shelling (%) and grain yield under heat stress. Results revealed presence of high genetic variability among maize hybrids for yield and quality related traits. Association analysis showed that thousand grain weight (0.6328 *) cob height (0.5982 *) and protein contents (-0.5259 *) had significant relationship with grain yield. Principal component and biplot analysis were performed to assess genetic diversity and heat tolerance among maize genotypes. Locally bred hybrids FH-988, FH-922, FH-1046 and YH-1898 were found to be the most heat tolerant hybrids and possessed maximum diversity for yield and quality related traits under heat stress. These results could be implied for characterization and further improvement of maize germplasm to produce heat resilient maize genotypes.
Maize is one of the most important field crops considering its utilization as food, feed, fodder, and biofuel. However, the sustainability of its production is under serious threat of heat and drought stresses, as these stresses could hamper crop growth, causing a significant loss to kernel yield. The research study was carried out at Maize and Millets Research Institute, Yusafwala-Sahiwal for two consecutive spring seasons (2019–20 and 2020–21) under a split-split plot design. The current study explained the individual and combined effects of drought and heat stresses on morphology, phenology, physiology, reactive oxygen species (stocktickerROS), antioxidant status, and kernel quality traits in four indigenous (YH-5482, YH-5427, YH-5404, and YH-1898) and one multinational maize hybrid (P-1543). Stress treatments, i.e., drought, heat, and drought+heat, were applied ten days before tasseling and lasted for 21 days. The results revealed the incidence of oxidative stress due to overproduction of Hydrogen peroxide; H2O2 (control: 1.9, heat+drought: 5.8), and Malondialdehyde; stocktickerMDA (control: 116.5, heat+drought: 193), leading to reduced photosynthetic ability (control: 31.8, heat:16.5), alterations in plant morphology, decrease in kernel yield (control: 10865 kg ha–1, heat+drought: 5564 kg ha–1), and quality-related traits. Although all the stress treatments induced the accumulation of stress-responsive osmolytes and enzymatic antioxidants to cope with the negative impact of osmotic stress, the effect of combined drought + heat stress was much higher. The overall performance of indigenous maize hybrid YH-5427 was much more promising than the other hybrids, attributed to its better tolerance of drought and heat stresses. Such stress tolerance was attributed to maintaining photosynthetic activity, a potent antioxidant and osmolyte-based defense mechanisms, and minimum reductions in yield-related traits, which assured the maximum kernel yield under all stress treatments.
This study was conducted to compare the performance of ten sorghum hybrids at two locations (Maize and Millets Research Institute, Yusafwala, Sahiwal, MMRI) & Sorghum Research Sub-Station, Dera Gazi Khan, D.G. Khan) for two consecutive years (2015 and 2016), i.e. in a total of four environments (MMRI-15, MMRI-16, DG Khan-15 and DG Khan-16). The experiment was conducted in a Randomized Complete Block Design with a plot size of 4 × 0.75 × 2 m. In all four environments the crop was sown in July and harvested in December. Five plants were selected randomly from each plot for data collection. The following ranges were determined in the investigated traits; grain yield (2858.34-5266.33 kg ha-1), fodder yield (28663-45667 kg ha-1), days to 50% anthesis (76-81 days) and Brix value (8.28-18.42). Analysis of variance (ANOVA) estimates, generated by the biplot software were used for data interpretation. It was found that the influence of genotype, environment and G × E interaction was significant (P<0.05) for all traits in all environments. The data for all traits except Brix value were useful for further study. For grain yield and fodder yield, hybrid YSH-95 was the most suitable due to its higher yield and better stability. Sorghum Research Sub-Station Dera Gazi Khan (DG Khan), a non-discriminating location, were considered suitable for generally adapted hybrids and Maize and Millets Research Institute, Yusafwala, Sahiwal (MMRI), a more discriminating location, were considered best for specifically adapted hybrids. The results of which-won-where biplots showed that Lasani was the best general hybrid at both locations, whereas YSH-95 was the best hybrid for the specific environmental conditions at MMRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.