<span lang="EN-US">Solar energy plays an important role in renewable energy generation systems since it is clean, pollution-free sustainable energy as well as the increasing cost-of-electricity which causes high-growth demands amongst utility customers. This paper presents various circuit topologies of DC-DC converters in solar photovoltaic (PV) applications. There are three types of DC-DC converter presented in this paper that can be integrated with solar PV system which are buck, boost and buck-boost converter in various applications. This paper also presents the application on DC-DC converter in solar PV system for maximum power point tracking (MPPT) feature. The advantages and disadvantages of each topology will be discussed further in term of cost, components, efficiency and limitations.</span>
<p> The low conversion energy efficiency of solar panel is affected by the several environmental issues. Solar radiation, ambient temperature, dust accumulation and wind velocity are the environmental problems. This main goal of this paper is to understanding the solar panel behavior under varying of wind velocity amounts. A three-dimension (3-D) model of solar panel is conducted in the present investigation. The solar panel model is simulated under given operating condition and different amounts of wind velocity. Four different of wind velocity value of 0 m/s, 0.43 m/s, 2.5 m/s and 6.95 m/s was selected to examine the solar panel performance. The simulation results are obtained with ANSYS simulation software. The temperature distribution of the solar panel model will be discussed in this current paper. The simulation result is showed highest wind velocity can be provided good cooling effect for the solar panel model in order to enable the solar panel can be operated to perform well at lower temperature.<em></em></p>
<p>Hibiscus Sabdariffa L. well known as Roselle flower was used as sensitizers for Dye-Sensitized Solar Cell (DSSC). The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using ‘degas’ mode at the temperature of 30°. Doctor blade method was applied in the fabrication of titanium dioxide (TiO<sub>2</sub>) on ITO glass. Absorption spectra of Roselle dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. Based on FTIR result, the broad absorption at peak 2889 cm-<sup>1</sup>, 2976 cm-<sup>1</sup>, and 3366 cm-<sup>1</sup> attributed to the O-H stretching which is the presence of hydroxyl group. The use Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive Spectroscopy (EDS) analysis are to characterize the surface morphology and element in the TiO<sub>2</sub> thin film.</p>
This paper presents results from a new donor-acceptor material using easily available and renewable organic material. The new material was developed and tested using an idea of a new electron transfer mechanism using combined chlorophyll and ferrocene as the bulk-hetero junction active layer. This research aims to produce a binding between the chlorophyll molecule and the protein substitute using ferrocene so that the theory of electron transfer can be tested. The main objective of the research is to produce electricity from the new donor-acceptor material. It is observed that open-circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and the efficiency (η) of the device were 0.1665V, 0.005A, 0.645 and 0.13%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.