This study aimed to predict the service level agreement travel time for goods and document shipments at PT Pos Indonesia (Persero) from the island of Java to the islands of Kalimantan, Sulawesi, Maluku and Papua. This is very important because of the high competition between the logistics industry which is getting faster and faster. The random forest method was chosen because this method is easy to use and flexible for various kinds of data. The prediction results with Random Forest in this study have a good level of accuracy, namely 83.86% of the average 4 trials. This shows that the Random Forest method is the right choice for managing the existing data model at PT Pos Indonesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.