The rapidly increasing trend of retinal diseases needs serious attention, worldwide. Glaucoma is a critical ophthalmic disease that can cause permanent vision impairment. Typically, ophthalmologists diagnose glaucoma using manual assessments which is an error-prone, subjective, and time-consuming approach. Therefore, the development of automated methods is crucial to strengthen and assist the existing diagnostic methods. In fundus imaging, optic cup (OC) and optic disc (OD) segmentation are widely accepted by researchers for glaucoma screening assistance. Many research studies proposed artificial intelligence (AI) based decision support systems for glaucoma diagnosis. However, existing AI-based methods show serious limitations in terms of accuracy and efficiency. Variations in backgrounds, pixel intensity values, and object size make the segmentation challenging. Particularly, OC size is usually very small with unclear boundaries which makes its segmentation even more difficult. To effectively address these problems, a novel feature excitation-based dense segmentation network (FEDS-Net) is developed to provide accurate OD and OC segmentation. FEDS-Net employs feature excitation and information aggregation (IA) mechanisms for enhancing the OC and OD segmentation performance. FEDS-Net also uses rapid feature downsampling and efficient convolutional depth for diverse and efficient learning of the network, respectively. The proposed framework is comprehensively evaluated on three open databases: REFUGE, Drishti-GS, and Rim-One-r3. FEDS-Net achieved outperforming segmentation performance compared with state-of-the-art methods. A small number of required trainable parameters (2.73 million) also confirms the superior computational efficiency of our proposed method.
The increasing global infertility rate is a matter of significant concern. In vitro fertilization (IVF) significantly minimizes infertility by providing an alternative clinical means of becoming pregnant. The success of IVF mainly depends on the assessment and analysis of human blastocyst components such as the blastocoel (BC), zona pellucida (ZP), inner cell mass (ICM), and trophectoderm (TE). Embryologists perform a morphological assessment of the blastocyst components for the selection of potential embryos to be used in the IVF process. Manual assessment of blastocyst components is time-consuming, subjective, and prone to errors. Therefore, artificial intelligence (AI)-based methods are highly desirable for enhancing the success rate and efficiency of IVF. In this study, a novel feature-supplementation-based blastocyst segmentation network (FSBS-Net) has been developed to deliver higher segmentation accuracy for blastocyst components with less computational overhead compared with state-of-the-art methods. FSBS-Net uses an effective feature supplementation mechanism along with ascending channel convolutional blocks to accurately detect the pixels of the blastocyst components with minimal spatial loss. The proposed method was evaluated using an open database for human blastocyst component segmentation, and it outperformed state-of-the-art methods in terms of both segmentation accuracy and computational efficiency. FSBS-Net segmented the BC, ZP, ICM, TE, and background with intersections over union (IoU) values of 89.15, 85.80, 85.55, 80.17, and 95.61%, respectively. In addition, FSBS-Net achieved a mean IoU for all categories of 87.26% with only 2.01 million trainable parameters. The experimental results demonstrate that the proposed method could be very helpful in assisting embryologists in the morphological assessment of human blastocyst components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.