In today’s world, mental health diseases have become highly prevalent, and depression is one of the mental health problems that has become widespread. According to WHO reports, depression is the second-leading cause of the global burden of diseases. In the proliferation of such issues, social media has proven to be a great platform for people to express themselves. Thus, a user’s social media can speak a great deal about his/her emotional state and mental health. Considering the high pervasiveness of the disease, this paper presents a novel framework for depression detection from textual data, employing Natural Language Processing and deep learning techniques. For this purpose, a dataset consisting of tweets was created, which were then manually annotated by the domain experts to capture the implicit and explicit depression context. Two variations of the dataset were created, on having binary and one ternary labels, respectively. Ultimately, a deep-learning-based hybrid Sequence, Semantic, Context Learning (SSCL) classification framework with a self-attention mechanism is proposed that utilizes GloVe (pre-trained word embeddings) for feature extraction; LSTM and CNN were used to capture the sequence and semantics of tweets; finally, the GRUs and self-attention mechanism were used, which focus on contextual and implicit information in the tweets. The framework outperformed the existing techniques in detecting the explicit and implicit context, with an accuracy of 97.4 for binary labeled data and 82.9 for ternary labeled data. We further tested our proposed SSCL framework on unseen data (random tweets), for which an F1-score of 94.4 was achieved. Furthermore, in order to showcase the strengths of the proposed framework, we validated it on the “News Headline Data set” for sarcasm detection, considering a dataset from a different domain. It also outmatched the performance of existing techniques in cross-domain validation.
Child mortality, particularly among infants below 5 years, is a significant community well-being concern worldwide. The health sector’s top priority in emerging states is to minimize children’s death and enhance infant health. Despite a substantial decrease in worldwide deaths of children below 5 years, it remains a significant community well-being concern. Children under five years of age died at 37 per 1,000 live birth globally in 2020. However, in underdeveloped countries such as Pakistan and Ethiopia, the fatality rate of children per 1,000 live birth is 65.2 and 48.7, respectively, making it challenging to reduce. Predictive analytics approaches have become well-known for predicting future trends based on previous data and extracting meaningful patterns and connections between parameters in the healthcare industry. As a result, the objective of this study was to use data mining techniques to categorize and highlight the important causes of infant death. Datasets from the Pakistan Demographic Health Survey and the Ethiopian Demographic Health Survey revealed key characteristics in terms of factors that influence child mortality. A total of 12,654 and 12,869 records from both datasets were examined using the Bayesian network, tree (J-48), rule induction (PART), random forest, and multi-level perceptron techniques. On both datasets, various techniques were evaluated with the aforementioned classifiers. The best average accuracy of 97.8% was achieved by the best model, which forecasts the frequency of child deaths. This model can therefore estimate the mortality rates of children under five years in Ethiopia and Pakistan. Therefore, an online model to forecast child death based on our research is urgently needed and will be a useful intervention in healthcare.
Anonymous authentication is a critical step in safeguarding vehicle privacy and security in VANETs. VANETs connected with blockchain are gaining popularity as a means to increase the effectiveness of anonymous authentication across many security domains. However, present blockchain-assisted authentication systems cannot successfully achieve anonymity since colluding RSUs or vehicles may acquire linkability via the same retrieved record, hence destroying anonymity. To solve the problem, the proposed work offers an unlinkable anonymous signature-based authentication for VANET to ensure collusion resistance. To provide V2R unlinkability, a trusted authority issues anonymous parameters that conceal the vehicle's identification from RSUs and other vehicles in the VANET system. The vehicle user produces anonymous signatures, and RSUs validate them during anonymous authentication. Moreover, the proposed authentication methods are based on an anonymous certificateless signature (ACS) approach that is computationally more efficient and provably safe against eternal forgery in the random oracle model. Additionally, the proposed work guarantees that neither an RSU nor a vehicle has the authority to divulge users’ true identities. Hence, the proposed system has stringent unlinkability and better anonymity, and it enhances the efficiency of V2R and V2V communications considerably according to security analysis and performance assessment.
In developing countries, child health and restraining under-five child mortality are one of the fundamental concerns. UNICEF adopted sustainable development goal 3 (SDG3) to reduce the under-five child mortality rate globally to 25 deaths per 1,000 live births. The under-five mortality rate is 69 deaths per 1,000 live child-births in Pakistan as reported by the Demographic and Health Survey (2018). Predictive analytics has the power to transform the healthcare industry, personalizing care for every individual. Pakistan Demographic Health Survey (2017–2018), the publicly available dataset, is used in this study and multiple imputation methods are adopted for the treatment of missing values. The information gain, a feature selection method, ranked the information-rich features and examine their impact on child mortality prediction. The synthetic minority over-sampling method (SMOTE) balanced the training dataset, and four supervised machine learning classifiers have been used, namely the decision tree classifier, random forest classifier, naive Bayes classifier, and extreme gradient boosting classifier. For comparative analysis, accuracy, precision, recall, and F1-score have been used. Eventually, a predictive analytics framework is built that predicts whether the child is alive or dead. The number under-five children in a household, preceding birth interval, family members, mother age, age of mother at first birth, antenatal care visits, breastfeeding, child size at birth, and place of delivery were found to be critical risk factors for child mortality. The random forest classifier performed efficiently and predicted under-five child mortality with accuracy (93.8%), precision (0.964), recall (0.971), and F1-score (0.967). The findings could greatly assist child health intervention programs in decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.