Droplet transport on, and shedding from, surfaces is ubiquitous in nature and is a key phenomenon governing applications including biofluidics, self-cleaning, anti-icing, water harvesting, and electronics thermal management. Conventional methods to achieve spontaneous droplet shedding enabled by surface−droplet interactions suffer from low droplet transport velocities and energy conversion efficiencies. Here, by spatially confining the growing droplet and enabling relaxation via rationally designed grooves, we achieve single-droplet jumping of micrometer and millimeter droplets with dimensionless jumping velocities v* approaching 0.95, significantly higher than conventional passive approaches such as coalescence-induced droplet jumping (v* ≈ 0.2−0.3). The mechanisms governing single-droplet jumping are elucidated through the study of groove geometry and local pinning, providing guidelines for optimized surface design. We show that rational design of grooves enables flexible control of droplet-jumping velocity, direction, and size via tailoring of local pinning and Laplace pressure differences. We successfully exploit this previously unobserved mechanism as a means for rapid removal of droplets during steam condensation. Our study demonstrates a passive method for fast, efficient, directional, and surface-pinning-tolerant transport and shedding of droplets having micrometer to millimeter length scales.
Scale formation presents an enormous cost to the global economy. Classical nucleation theory dictates that to reduce the heterogeneous nucleation of scale, the surface should have low surface energy and be as smooth as possible. Past approaches have focused on lowering surface energy via the use of hydrophobic coatings and have created atomically smooth interfaces to eliminate nucleation sites, or both, via the infusion of lowsurface-energy lubricants into rough superhydrophobic substrates. Although lubricant-based surfaces are promising candidates for antiscaling, lubricant drainage inhibits their utilization. Here, we develop methodologies to deposit slippery omniphobic covalently attached liquids (SOCAL) on arbitrary substrates. Similar to lubricant-based surfaces, SOCAL has ultralow roughness and surface energy, enabling low nucleation rates and eliminating the need to replenish the lubricant. To enable SOCAL coating on metals, we investigated the surface chemistry required to ensure high-quality functionalization as measured by ultralow contact angle hysteresis (<3°). Using a multilayer deposition approach, we first electrophoretically deposit (EPD) silicon dioxide (SiO 2 ) as an intermediate layer between the metallic substrate and SOCAL. The necessity of EPD SiO 2 is to smooth (<10 nm roughness) as well as to enable the proper surface chemistry for SOCAL bonding. To characterize antiscaling performance, we utilized calcium sulfate (CaSO 4 ) scale tests, showing a 20× reduction in scale deposition rate than untreated metallic substrates. Descaling tests revealed that SOCAL dramatically decreases scale adhesion, resulting in rapid removal of scale buildup. Our work not only demonstrates a robust methodology for depositing antiscaling SOCAL coatings on metals but also develops design guidelines for the creation of antifouling coatings for alternate applications such as biofouling and high-temperature coking.
Functional coatings that can achieve stable superhydrophobicity have the potential to significantly enhance a plethora of industrial applications ranging from building environmental control, phase change heat transfer, thermoelectric power generation, and hydrodynamic drag reduction. In order to create superhydrophobic surfaces, scientists have utilized a variety of surface structuring methods in combination with organosilane based alkyl and perfluorinated synthetic chemical coatings. Unfortunately, organosilane based alkyl and perfluorinated chemicals tend to be toxic, flammable, corrosive, difficult to dispose of, and damaging to the environment. Here, we develop two new methods to achieve superhydrophobicity using liquid phase deposition of cinnamic acid or myristic acid, both organic compounds derived from natural sources. By varying the liquid phase solution concentration, we develop deposition methods on scalable copper oxide microstructured surfaces capable of achieving apparent advancing contact angles as high as 154° and 165° for cinnamic and myristic acid, respectively, with low contact angle hysteresis (<15°). To demonstrate superhydrophobic performance, we utilize high speed optical microscopy to show stable coalescence induced droplet jumping during atmospheric water vapor condensation. This study presents a novel avenue for safer and more environmentally friendly fabrication of superhydrophobic surfaces for energy and water applications.
Since their discovery a decade ago, slippery liquid infused porous surfaces (SLIPSs) or lubricant infused surfaces (LISs) have been demonstrated time and again to have immense potential for a plethora of applications. Of these, one of the most promising is enhancing the energy efficiency of both thermoelectric and organic Rankine cycle power generation via enhanced vapor condensation. However, utilization of SLIPSs in the energy sector remains limited due to the poor understanding of their life span. Here, we use controlled conditions to conduct multimonth steam and ethanol condensation tests on ultrascalable nanostructured copper oxide structured surfaces impregnated with mineral and fluorinated lubricants having differing viscosities (9.7 mPa·s < μ < 5216 mPa·s) and chemical structures. Our study demonstrates that SLIPSs lose their hydrophobicity during steam condensation after 1 month due to condensate cloaking. However, these same SLIPSs maintain nonwetting after 5 months of ethanol condensation due to the absence of cloaking. Surfaces impregnated with higher viscosity oil (5216 mPa·s) increase the life span to more than 8 months of continuous ethanol condensation. Vapor shear tests revealed that SLIPSs do not undergo oil depletion during exposure to 10 m/s gas flows, critical to condenser implementation where single-phase superheated vapor impingement is prevalent. Furthermore, higher viscosity SLIPSs are shown to maintain good stability after exposure to 200 °C air. A subset of the durable SLIPSs did not show change in slipperiness after submerging in stagnant water and ethanol for up to 2 weeks, critical to condenser implementation where single-phase condensate immersion is prevalent. Our work not only demonstrates design methods and longevity statistics for slippery nanoengineered surfaces undergoing long-term dropwise condensation of steam and ethanol but also develops the fundamental design guidelines for creating durable slippery liquid infused surfaces.
Tailoring thermal radiation using low‐infrared‐emissivity materials has drawn significant attention for diverse applications, such as passive radiative heating and thermal camouflage. However, the previously reported low‐infrared‐emissivity materials have the bottleneck of lacking independent control over visible optical properties. Here, a novel visibly transparent and infrared reflective (VTIR) coating by exploiting a nano‐mesh patterning strategy with an oxide–metal–oxide tri‐layer structure is reported. The VTIR coating shows simultaneously high transmittance in the visible region (>80% at 550 nm) and low emissivity in the mid‐infrared region (< 20% in 7–14 µm). The VTIR coating not only achieves a radiative heating effect of 6.6 °C for indoor conditions but also enables a synergetic effect with photothermal materials to keep human body warm at freezing temperatures for outdoor conditions, which is 10–15 °C warmer than normal cotton and Mylar film. Moreover, it demonstrates an excellent thermal camouflage effect at various temperatures (34–250 °C) and good compatibility with visible camouflage on the same object, making it ideal for both daytime and nighttime cloaking. With its unique and versatile spectral features, this novel VTIR design has great potential to make a significant impact on personal heat management and counter‐surveillance applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.