Abstract. The densely populated plains of the lower Indus Basin largely depend on water resources originating in the mountains of the transboundary upper Indus Basin. Recent studies have improved our understanding of this upstream–downstream linkage and the impact of climate change. However, water use in the mountainous part of the Indus and its hydropolitical implications have been largely ignored. This study quantifies the comparative impact of upper Indus water usage, through space and time, on downstream water availability under future climate change and socio-economic development. Future water consumption and relative pressure on water resources will vary greatly across seasons and between the various sub-basins of the upper Indus. During the dry season, the share of surface water required within the upper Indus is high and increasing, and in some transboundary sub-basins future water requirements exceed availability during the critical winter months. In turn this drives spatiotemporal hotspots to emerge in the lower Indus where seasonal water availability is reduced by over 25 % compared to natural conditions. This will play an important, but previously unaccounted for, compounding role in the steep decline of per capita seasonal water availability in the lower Indus in the future, alongside downstream population growth. Increasing consumption in the upper Indus may thus locally lead to water scarcity issues, and increasingly be a driver of downstream water stress during the dry season. Our quantified perspective on the evolving upstream–downstream linkages in the transboundary Indus Basin highlights that long-term shared water management here must account for rapid socio-economic change in the upper Indus and anticipate increasing competition between upstream and downstream riparian states.
Water security and food security in the Indus basin are highly interlinked and subject to severe stresses. Irrigation water demands presently already exceed what the basin can sustainably provide, but per-capita food availability remains limited. Rapid population growth and climate change are projected to further intensify pressure on the interdependencies between water and food security. The agricultural system of the Indus basin must therefore change and adapt to be able to achieve the associated Sustainable Development Goals (SDGs). The development of robust policies to guide such changes requires a thorough understanding of the synergies and trade-offs that different strategies for agricultural development may have for water and food security. In this study, we defined three contrasting trajectories for agricultural system change based on a review of scientific literature on regional agricultural developments and a stakeholder consultation workshop. We assessed the consequences of these trajectories for water and food security with a spatially explicit modeling framework for two scenarios of climatic and socio-economic change over the period 1980–2080. Our results demonstrate that agricultural system changes can ensure per capita food production in the basin remains sufficient under population growth. However, such changes require additional irrigation water resources and may strongly aggravate water stress. Conversely, a shift to sustainable water management can reduce water stress but has the consequence that basin-level food self-sufficiency may not be feasible in future. This suggests that biophysical limits likely exist that prevent agricultural system changes to ensure both sufficient food production and improve water security in the Indus basin under strong population growth. Our study concludes that agricultural system changes are an important adaptation mechanism toward achieving water and food SDGs, but must be developed alongside other strategies that can mitigate its adverse trade-offs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.