Wormhole attack is one of the severe threats to wireless sensor and ad hoc networks. Most of the existing countermeasures either require specialized hardware or demand high network overheads in order to capture the specific symptoms induced by the wormholes, which in result limits their applicability. In this paper, we exploit an inevitable symptom of wormholes and present Pworm, a passive wormhole detection and localization system based upon the key observation that a large amount of network traffic will be attracted by the wormholes. The proposed scheme is passive, real-time, and efficient against both active and passive wormholes. Our approach silently observes the variations in network topology to infer the wormhole existence and solely relies on network routing information. It does not necessitate specialized hardware or poses rigorous assumptions on network features. We evaluate our scheme through extensive simulations of 100 to 800 nodes for various network scales and show that Pworm is well suited for false alarms, scalability, and time delay in terms of activation as well as detection latencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.