Video streaming is a dominant contributor to the global Internet traffic. Consequently, monitoring video streaming Quality of Experience (QoE) is of paramount importance to network providers. Monitoring QoE of video is a challenge as most of the video traffic of today is encrypted. In this paper, we consider this challenge and present an approach based on controlled experimentation and machine learning to estimate QoE from encrypted video traces using network level measurements only. We consider a case of YouTube and play out a wide range of videos under realistic network conditions to build ML models (classification and regression) that predict the subjective MOS (Mean Opinion Score) based on the ITU P.1203 model along with the QoE metrics of startup delay, quality (spatial resolution) of playout and quality variations, and this is using only the underlying network Quality of Service (QoS) features. We comprehensively evaluate our approach with different sets of input network features and output QoE metrics. Overall, our classification models predict the QoE metrics and the ITU MOS with an accuracy of 63-90% while the regression models show low error; the ITU MOS (1-5) and the startup delay (in seconds) are predicted with a root mean square error of 0.33 and 2.66 respectively.
In this paper, we aim to explore the potential of using onboard cameras and pre-stored geo-referenced imagery for Unmanned Aerial Vehicle (UAV) localization. Such a vision-based localization enhancing system is of vital importance, particularly in situations where the integrity of the global positioning system (GPS) is in question (i.e., in the occurrence of GPS outages, jamming, etc.). To this end, we propose a complete trainable pipeline to localize an aerial image in a pre-stored orthomosaic map in the context of UAV localization. The proposed deep architecture extracts the features from the aerial imagery and localizes it in a pre-ordained, larger, and geotagged image. The idea is to train a deep learning model to find neighborhood consensus patterns that encapsulate the local patterns in the neighborhood of the established dense feature correspondences by introducing semilocal constraints. We qualitatively and quantitatively evaluate the performance of our approach on real UAV imagery. The training and testing data is acquired via multiple flights over different regions. The source code along with the entire dataset, including the annotations of the collected images has been made public 1. Up-to our knowledge, such a dataset is novel and first of its kind which consists of 2052 high-resolution aerial images acquired at different times over three different areas in Pakistan spanning a total area of around 2 km 2 .
For internet applications, measuring, modeling and predicting the quality experienced by end users as a function of network conditions is challenging. A common approach for building application speci c Quality of Experience (QoE) models is to rely on controlled experimentation. For accurate QoE modeling, this approach can result in a large number of experiments to carry out because of the multiplicity of the network features, their large span (e.g., bandwidth, delay) and the time needed to setup the experiments themselves. However, most often, the space of network features in which experimentations are carried out shows a high degree of uniformity in the training labels of QoE. This uniformity, di cult to predict beforehand, ampli es the training cost with little or no improvement in QoE modeling accuracy. So, in this paper, we aim to exploit this uniformity, and propose a methodology based on active learning, to sample the experimental space intelligently, so that the training cost of experimentation is reduced. We prove the feasibility of our methodology by validating it over a particular case of YouTube streaming, where QoE is modeled both in terms of interruptions and stalling duration.
Screen resolution along with network conditions are main objective factors impacting the user experience, in particular for video streaming applications. User terminals on their side feature more and more advanced characteristics resulting in different network requirements for good visual experience. Previous studies tried to link MOS (Mean Opinion Score) to video bitrate for different screen types (e.g., Common Intermediate Format (CIF), Quarter Common Intermediate Format (QCIF), and High Definition (HD)). We leverage such studies and formulate a QoE driven resource allocation problem to pinpoint the optimal bandwidth allocation that maximizes the QoE (Quality of Experience) over all users of a network service provider located behind the same bottleneck link, while accounting for the characteristics of the screens they use for video playout. For our optimization problem, QoE functions are built using curve fitting on datasets capturing the relationship between MOS, screen characteristics, and bandwidth requirements. We propose a simple heuristic based on Lagrangian relaxation and KKT (Karush Kuhn Tucker) conditions to efficiently solve the optimization problem. Our numerical simulations show that the proposed heuristic is able to increase overall QoE up to 20% compared to an allocation with a TCP look-alike strategy implementing max-min fairness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.