Incremental equal channel angular pressing (I-ECAP) is one of the continuous severe plastic deformation (SPD) processes. This paper presents the processing of commercial purity titanium (CP-Ti) using a double billet variant of I-ECAP process. Ultrafine-grain (UFG) structure was successfully achieved after six passes of I-ECAP at 300 °C. Microstructural evolution and texture development were tracked using EBSD. Analysis revealed continuous dynamic recrystallization (CDRX) as one of the grain refinement mechanism during processing. Room temperature tensile tests carried out before and after six passes, shows significant increase in strength with acceptable levels of ductility. The yield strength was increased from 308 to 558 MPa and ultimate tensile strength from 549 to 685 MPa. Compression tests conducted at different strain rates shows considerable increase in strength and enhanced strain rate sensitivity after processing. A distinct three-stage strain hardening was observed during compression. However the processed material displayed a loss in strain hardening ability during tensile as well as in compression tests. Detailed microhardness measurements show the evolution of hardness after subsequent passes with a reasonable level of homogeneity after the sixth pass. It is demonstrated that I-ECAP is an effective method for grain refinement in CP-Ti and subsequently improving its mechanical properties
This paper presents an investigation on the evolution of microstructure and deformation characteristics of commercial purity Titanium (CP-Ti) during incremental equal channel angular pressing (I-ECAP). CP-Ti grade 2 was subjected to six passes at 300 °C following route BC, using a die with channel angle of 120°. Electron backscatter diffraction (EBSD) technique was used to characterize the microstructure after first, second, fourth and sixth pass, in the flow and transverse plane of the samples. Texture development through subsequent processing was also investigated using pole figures in both planes. Following first pass, the grain boundary maps across both flow and transverse plane showed a high degree of heterogeneity in grain morphology with the presence of elongated and fine grains. Also, misorientation peaks associated with {10-12} tensile twins and a small fraction of {11-22} compressive twins were observed in the microstructure. After second pass, microstructure was further refined and the twinning activity was greatly reduced with no noticeable activity after the fourth pass. Remarkable grain refinement was achieved after sixth pass with majority of grains in the ultrafine grain (UFG) range and with a relatively homogenous microstructure. Continuous dynamic recrystallization (CDRX) has been observed during subsequent I-ECAP processing. It was seen that twinning alongside CDRX acted as a dominant grain refinement mechanism during the initial passes of I-ECAP process beyond which slip was dominant deformation behaviour
This paper presents a numerical simulation for examining temperature fields, residual stresses, and distortions in multi-pass welding of a pipe-flange joint. A sequentially coupled transient non-linear thermo-mechanical three-dimensional finite-element model is developed to simulate four-pass tungsten inert gas welding process. An ANSI class 300# flange is welded with a 6 mm thick, 200 mm long, and 100 mm nominal diameter pipe, using a single V-groove butt joint with a 1.2 mm root opening. Goldak's double ellipsoidal model is used for the weld heat source, and inactive element addition technique is used for the addition of weld filler elements. Axial and hoop residual stresses and out-of-plane distortions along the flange face are plotted. In addition, welding start and end effects are discussed.
Magnesium alloys are very promising materials for weight-saving structural applications due to their low density, comparing to other metals and alloys currently used. However, they usually suffer from a limited formability at room temperature and low strength. In order to overcome those issues, processes of severe plastic deformation (SPD) can be utilized to improve mechanical properties, but processing parameters need to be selected with care to avoid fracture, very often observed for those alloys during forming. In the current work, the AZ31B magnesium alloy was subjected to SPD by incremental equal-channel angular pressing (I-ECAP) at temperatures varying from 398 K to 525 K (125°C to 250°C) to determine the window of allowable processing parameters. The effects of initial grain size and billet rotation scheme on the occurrence of fracture during I-ECAP were investigated. The initial grain size ranged from 1.5 to 40 lm and the I-ECAP routes tested were A, B C , and C. Microstructures of the processed billets were characterized before and after I-ECAP. It was found that a fine-grained and homogenous microstructure was required to avoid fracture at low temperatures. Strain localization arising from a stress relaxation within recrystallized regions, namely twins and finegrained zones, was shown to be responsible for the generation of microcracks. Based on the I-ECAP experiments and available literature data for ECAP, a power law between the initial grain size and processing conditions, described by a Zener-Hollomon parameter, has been proposed. Finally, processing by various routes at 473 K (200°C) revealed that route A was less prone to fracture than routes B C and C.
The paper describes a finite element method in 2D and 3D to simulate the super plastic forming of a demonstrator jet engine fan blade made from Titanium alloy sheet. The fan blade is an assembly of three sheets in which a single inner (core) sheet is diffusion bonded to the two outer (skin) sheets at prescribed zones, which is then super-plastically formed to a desired fan profile. In the model, the diffusion bonded zones between the core and skin sheets are simulated using tied interfaces. The thickness of each skin sheet is not uniform and significant change in thickness can occur over a short distance as well as gradually over the entire skin sheet. The thickness of the core sheet which is smaller than the thickness of each skin sheet remains uniform. The paper describes the design for a scaled-down demonstrator fan blade and model build process. Selected results and evaluations of finite element simulations are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.