Melanoma belongs to the category of inoperable type of skin cancers, and its occurrence rate has increased tremendously over the past three decades [1]. According to statistics provided by the World Health Organization (WHO), almost 132,000 new cases of melanoma are reported each year worldwide. It has been reported [2] that diagnosis of melanoma, in its early stages, significantly increases chances of the patient's survival. Dermatoscopy, also knows as dermoscopy is a non-invasive clinical procedure used for
Detection and mitigation of modern malware are critical for the normal operation of an organisation. Traditional defence mechanisms are becoming increasingly ineffective due to the techniques used by attackers such as code obfuscation, metamorphism, and polymorphism, which strengthen the resilience of malware. In this context, the development of adaptive, more effective malware detection methods has been identified as an urgent requirement for protecting the IT infrastructure against such threats, and for ensuring security. In this paper, we investigate an alternative method for malware detection that is based on N-grams and machine learning. We use a dynamic analysis technique to extract an Indicator of Compromise (IOC) for malicious files, which are represented using N-grams. The paper also proposes TF-IDF as a novel alternative used to identify the most significant N-grams features for training a machine learning algorithm. Finally, the paper evaluates the proposed technique using various supervised machine-learning algorithms. The results show that Logistic Regression, with a score of 98.4%, provides the best classification accuracy when compared to the other classifiers used.
According to statistics, there are 422 million speakers of the Arabic language. Islam is the second-largest religion in the world, and its followers constitute approximately 25% of the world’s population. Since the Holy Quran is in Arabic, nearly all Muslims understand the Arabic language per some analytical information. Many countries have Arabic as their native and official language as well. In recent years, the number of internet users speaking the Arabic language has been increased, but there is very little work on it due to some complications. It is challenging to build a robust recognition system (RS) for cursive nature languages such as Arabic. These challenges become more complex if there are variations in text size, fonts, colors, orientation, lighting conditions, noise within a dataset, etc. To deal with them, deep learning models show noticeable results on data modeling and can handle large datasets. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) can select good features and follow the sequential data learning technique. These two neural networks offer impressive results in many research areas such as text recognition, voice recognition, several tasks of Natural Language Processing (NLP), and others. This paper presents a CNN-RNN model with an attention mechanism for Arabic image text recognition. The model takes an input image and generates feature sequences through a CNN. These sequences are transferred to a bidirectional RNN to obtain feature sequences in order. The bidirectional RNN can miss some preprocessing of text segmentation. Therefore, a bidirectional RNN with an attention mechanism is used to generate output, enabling the model to select relevant information from the feature sequences. An attention mechanism implements end-to-end training through a standard backpropagation algorithm.
Glioblastoma (GBM) is the most high-risk and grievous tumour in the brain that causes the death of more than 50% of the patients within one to 2 years after diagnosis. Accurate detection and prognosis of this disease are critical to provide essential guidelines for treatment planning. This study proposed using a deep learning-based network for the GBM segmentation and radiomic features for the patient's overall survival (OS) time prediction. The segmentation model used in this study was a modified U-Net-based deep 3D multi-level dilated convolutional neural network. It uses multiple kernels of altered sizes to capture contextual information at different levels. The proposed scheme for OS time prediction overcomes the problem of information loss caused by the derivation of features in a single view due to the variation in the neighbouring pixels of the tumorous region. The selected features were based on texture, shape, and volume. These features were computed from the segmented components of tumour in axial, coronal, and sagittal views of magnetic resonance imaging slices. The proposed models were trained and evaluated on the BraTS 2019 dataset. Experimental results of OS time prediction on the validation data have showed an accuracy of 48.3%, with the mean squared error of 92 599.598. On the validation data, the segmentation model achieved a mean dice similarity coefficient of 0.75, 0.89, and 0.80 for enhancing tumour, whole tumour, and tumour core, respectively. Future work is warranted to improve the overall performance of OS time prediction based on the findings in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.