Banyaknya malware menyebabkan IDS (Intrusion Detection System) dituntut menyesuaikan diri semakin kompleks sehingga mahal dan membebani perusahaan yang menggunakannya. Sistem yang berbasis teknologi Host-based IDS dan Signatured-based IDS sudah banyak digunakan namun hanya mampu mendeteksi serangan yang sudah diketahui sebelumnya, untuk memperbaiki kinerjanya perlu dilakukan analisa pada data log berdasarkan alert yang diberikan. Teknik klasifikasi Naïve Bayes digunakan untuk membantu meningkatkan efisisensi dan efektifitas analisa tersebut. Penelitian ini dilakukan dengan mengambil empat langkah bagian dari metodologi SKKNI (Standar Kompetensi Kerja Nasional Indonesia) No.299 tahun 2020, Artificial Intelligence, sub bidang Data Science, yaitu data understanding, data preparation, modeling, dan model evaluation. Dataset dari penyedia layanan IDS sebanyak 575 data yang dibagi menjadi 515 data latih dan 60 data uji. Hasil evaluasi data uji dengan confusion matrix diperoleh pengukuran metrik accuracy 0,87, recall 0,89, precision 0,83, dan F-Measure 0,86. Adanya FP (False Positive) dan FN (False Negatif), keduanya sangat penting bagi penguna IDS untuk meningkatkan kualitas layanan kepada pelanggan dan mengurangi resiko akibat adanya intrusi. FP dan FN menjadi fokus dalam melakukan analisa log alert dari IDS sehingga tidak perlu menganalisa keseluruhan data, berdampak memberikan hasil 85% lebih efektif dan berkontribusi pada efisiensi tenaga dan waktu bagi tim keamanan suatu peruasahaan pengguna IDS. Selain itu didapat bahwa sekitar 50% data IDS adalah intrusi atau pengganggu lainnya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.