Abstract. Bamboo is a rapid renewable plant that has a fast growth rate as compared to trees, which increases its suitability to be used as a sustainable source for wood industry, especially in construction works. Due to the lack of understanding on bamboo properties, the utilization of bamboo in construction has always been neglected. This paper presents an investigation on the mechanical properties of four species of treated bamboos that are available in Malaysia, which include Bambusa Vulgaris, Dendrocalamus Asper, Schizostachyum Grande, and Gigantochloa Scortechinii. A mechanical testing was carried out in various parts along the culm of these bamboo species in order to examine the differences of their compressive strength and tensile strength. The strength development and moisture content of these bamboo species were also monitored at a five-month interval. The results showed that Bambusa Vulgaris, Dendrocalamus Asper, and Gigantochloa Scortechinii possess excellent mechanical properties in compression and tensile strength, which indicate a good quality to be used as a construction material. As bamboo offers promising advantages, thus, it is suitable to be used as a substitute in place of structural timber in construction, which indirectly facilitates the preservation of the global environment.
The most commonly accepted method in evaluation of the mechanical properties of metals would be the tension test. Its main objective would be to determine the properties relevant to the elastic design of machines and structures. Investigation of the engineering and true Stress-strain relationships of three specimens in conformance with ASTM E 8-04 is the aim of this paper. For the purpose of achieving this aim, evaluation of values such as ultimate tensile strength, yield strength, percentage of elongation and area reduction, fracture strain and Young's Modulus was done once the specimens were subjected to uniaxial tensile loading. The results indicate that the properties of steel materials are independent from their thickness and they generally yield and fail at the same stress and strain values. Also, it is concluded that the maximum true stress values are almost 15% higher than that of the maximum engineering stress values while the maximum true strain failure values are 1.5% smaller than the maximum engineering strain failure values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.