Multi-stream 60 GHz communication has the potential to achieve data rates up to 100 Gbps via multiplexing multiple data streams. Unfortunately, establishing multi-stream directional links can be a high overhead procedure as the search space increases with the number of spatial streams and the product of AP-client beam resolution. In this paper, we present MUlti-stream beam-Training for mm-wavE networks (MUTE) a novel system that leverages channel sparsity, GHz-scale sampling rate, and the knowledge of mm-Wave RF codebook beam patterns to construct a set of candidate beams for multi-stream beam steering. In 60 GHz WLANs, the AP establishes and maintains a directional link with every client through periodic beam training. MUTE repurposes these beam acquisition sweeps to estimate the Power Delay Profile (PDP) of each beam with zero additional overhead. Coupling PDP estimates with beam pattern knowledge, MUTE selects a set of candidate beams that capture diverse or ideally orthogonal paths to obtain maximum stream separability. Our experiments demonstrate that MUTE achieves 90% of the maximum achievable aggregate rate while incurring only 0.04% of exhaustive search's training overhead. CCS CONCEPTS • Networks → Network protocol design; Wireless local area networks; Network protocols;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.