BackgroundSelenium (Se) is an essential oligonutrient, as a component of several Se-containing proteins (selenoproteins), which exert important biological functions within an organism. In livestock, Se-enriched products have been proposed as dietary supplements to be included into functional feeds for animal preventive health care. To this end, it is important to understand the optimal range of concentrations for supplementation and how long it takes to be assimilated into the organism.MethodsIn this study, rainbow trout (Oncorhynchus mykiss) were fed a control diet containing 0.9 g Kg-1 Se or the same diet supplemented with a Se-Yeast product (Sel-Plex) to achieve Se concentrations ranging from 1.5–8.9 g Kg-1 for a period of ten weeks. Fish were sampled every two weeks for analysis. The kinetics of Se bioaccumulation and the effects on fish selenoprotein expression was determined in different tissues combining chemical and bimolecular techniques.ResultsThe Sel-Plex enriched diets did not have any effect on survival and growth performance. The highest Se levels were found in liver and kidney followed by muscle and blood cells. Analysis of the Se concentration factor showed that liver is able to initially regulate the amount of Se accumulated. However, with higher dietary Se level (4.8 and 8.9 g Kg-1) and longer times of exposure (10 weeks), regulation is ineffective and the Se tissue concentration increases. The expression of the selected trout selenoprotein transcripts showed an inverse correlation with Sel-Plex augmentation in most cases. In liver, kidney and blood cells the highest up-regulation of the trout selenoprotein genes was seen mostly in the group fed the diet enriched with the lowest concentration of Sel-Plex (0.5 g Kg-1) for 10 weeks.ConclusionSel-Plex may represent an excellent Se supplement to deliver a high level of Se without provoking harm to the fish and to guarantee the maximal absorption of the element. According to our results, a dietary supplementation of Sel-Plex between 0.5 and 4 g Kg-1 may allow maximal benefits, whereas 8 g Kg-1 may be excessive for the purpose of supplementation.
BackgroundSelenium (Se) is required for the synthesis of proteins (selenoproteins) with essential biological functions. Selenoproteins have a crucial role in the maintenance of cellular redox homeostasis in nearly all tissues, and are also involved in thyroid hormone metabolism, inflammation and immunity. Several immune processes rely on Se status and can be compromised if this element is present below the required level. Previous work has supported the notion that when Se is delivered at levels above those deemed to be the minimal required but below toxic concentrations it can have a boosting effect on the organism’s immune response. Based on this concept Se-enriched supplements may represent a valuable resource for functional feeds in animal farming, including aquaculture.ResultsIn this study we tested the effects of Se supplemented as Sel-Plex during an immune challenge induced by polyinosinic:polycytidylic acid (poly(I:C)), a pathogen-associated molecular pattern (PAMP) that mimics viral infection. Trout were fed two diets enriched with 1 or 4 mg Se Kg−1 of feed (dry weight) by Sel-Plex addition and a commercial formulation as control. The whole trout transcriptomic response was investigated by microarray and gene ontology analysis, the latter carried out to highlight the biological processes that were influenced by Sel-Plex supplementation in the head kidney (HK) and liver, the main immune and metabolic organs in fish. Overall, Sel-Plex enrichement up to 4 mg Se Kg−1 induced an important response in the trout HK, eliciting an up-regulation of several genes involved in pathways connected with hematopoiesis and immunity. In contrast, a more constrained response was seen in the liver, with lipid metabolism being the main pathway altered by Se supplementation. Upon stimulation with poly(I:C), supplementation of 4 mg Se Kg−1 increased the expression of principal mediators of the antiviral defences, especially IFN-γ, and down-stream molecules involved in the cell-mediated immune response.ConclusionsSupplementation of diets with 4 mg Se Kg−1 using Sel-Plex remarkably improved the fish response to viral PAMP stimulation. Sel-Plex, being a highly bioavailable supplement of organic Se, might represent a suitable option for supplementation of fish feeds, to achieve the final aim of improving fish fitness and resistance against immune challenges.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2418-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.