With a view to providing supportive information for the decision-making on the direction of the future nuclear energy systems in Korea (i.e., direct disposal or recycling of spent nuclear fuel) to be made around 2020, quantitative studies on the spent nuclear fuel (SNF) including transuranic elements (TRUs) and a series of economic analyses were conducted. At first, the total isotopic inventory of TRUs in the SNF to be generated from all thirty-six units of nuclear power plants in operation or under planning is estimated based on the Korean government's official plan for nuclear power development. Secondly, the optimized deployment strategies are proposed considering the minimum number of sodium cooled-fast reactors (SFRs) needed to transmute all TRUs. Finally, direct disposal and Pyro-SFR closed nuclear energy systems were compared using equilibrium economic model and considering reduction of TRUs and electricity generation as benefits. Probabilistic economic analysis shows that the assumed total generation cost for direct disposal and Pyro-SFR closed nuclear energy systems resides within the range of 13.60∼33.94 mills/kWh and 11.40∼25.91 mills/kWh, respectively. Dominant cost elements and the range of SFR overnight cost which guarantees the economic feasibility of the Pyro-SFR closed nuclear energy system over the direct disposal option were also identified through sensitivity analysis and break-even cost estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.