Solid waste management needs re-evaluating in developing countries like Pakistan, which currently employs landfilling as a first option. Over time, increasing population will result in decreasing space for landfill sites, ultimately increasing the cost of landfilling, while increasing accumulated waste will cause pollution. Locating and preparing a sanitary landfill includes the securing of large sectors and also everyday activity with the end goal to limit potential negative impacts. Energy production from municipal solid waste (MSW) is a perceptive idea for large cities, such as Karachi, as waste, which is an undesirable output that adds to land and air pollution, is transformed into a vital source of energy. The current study strives to provide a destination to solid waste by evaluating the energy potential that waste provides for power generation by the process of incineration. A sustainable energy generation plant based on the Rankine cycle is proposed. This study evaluates the various landfill sites in the case study area to determine their sustainability for a waste to energy (WtE) plant. The implementation of the proposed plant will not only provide an ultimate destination to waste but also generate 121.9 MW electricity at 25% plant efficiency. Thus, the generated electricity can be used to run a WtE plant and meet the energy requirements of the residents.
The ecosystem of earth, the habitation of 7.53 billion people and more than 8.7 million species, is being imbalanced by anthropogenic activities. The ever-increasing human population and race of industrialization is an exacerbated threat to the ecosystem. At present, the global average waste generation per person is articulated as 494 kg/year, an enormous amount of household waste (HSW) that ultimately hits 3.71×1012 kg of waste in one year. The ultimate destination of HSW is a burning issue because open dumping and burning as the main waste treatment and final disposal systems create catastrophic environmental limitations. This paper strives to contribute to this issue of HSW management that matters to everyone’s business, specifically to developing nations. The HSW management system of the world’s 12th largest city and 24th most polluted city, Karachi, was studied with the aim of generating possible economic gains by recycling HSWs. In this regard, the authors surveyed dumping sites for sample collection. The sample was segregated physically to determine the content type (organic, metals, and many others). Afterward, chemical analysis on AAS (Atomic Absorption Spectrophotometry) of debris and soil from a landfill site was performed. HSW is classified and quantified into major classes of household materials. The concentrations of e-waste [Cu], industrial development indicator [Fe], and the main component of lead-acid storage batteries [Pb] are quantified as 199.5, 428.5, and 108.5 ppm, respectively. The annual generation of the aforementioned metals as waste recovery is articulated as 1.2 × 106, 2.6 × 106 and 6.5 × 105 kg, respectively. Significantly, this study concluded that a results-based metal recovery worth 6.1 million USD is discarded every year in HSW management practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.