The strong optical scattering of biological tissue confounds our ability to focus light deeply into the brain beyond depths of a few hundred microns. This challenge can be potentially overcome by exploiting wavefront shaping techniques which allow light to be focused through or inside scattering media. However, these techniques require the scattering medium to be static, as changes in the arrangement of the scatterers between the wavefront recording and playback steps reduce the fidelity of the focus that is formed. Furthermore, as the thickness of the scattering medium increases, the influence of the dynamic nature becomes more severe due to the growing number of scattering events experienced by each photon. In this paper, by examining the scattering dynamics in the mouse brain via multispeckle diffusing wave spectroscopy (MSDWS) using a custom fiber probe that simulates a point-like source within the brain, we investigate the relationship between this decorrelation time and the depth of the point-like light source inside the living mouse brain at depths up to 3.2 mm.
The hippocampus is associated with memory and navigation, and the rodent hippocampus provides a useful model system for studying neurophysiology such as neural plasticity. Vascular changes at this site are closely related to brain diseases, such as Alzheimer’s disease, dementia, and epilepsy. Vascular imaging around the hippocampus in mice may help to further elucidate the mechanisms underlying these diseases. Optical coherence tomography angiography (OCTA) is an emerging technology that can provide label-free blood flow information. As the hippocampus is a deep structure in the mouse brain, direct in vivo visualisation of the vascular network using OCTA and other microscopic imaging modalities has been challenging. Imaging of blood vessels in the hippocampus has been performed using multiphoton microscopy; however, labelling with fluorescence probes is necessary when using this technique. Here, we report the use of label-free and noninvasive microvascular imaging in the hippocampal formation of mice using a 1.7-μm swept-source OCT system. The imaging results demonstrate that the proposed system can visualise blood flow at different locations of the hippocampus corresponding with deep brain areas.
Speckle-based methods are popular non-invasive, label-free full-field optical techniques for imaging blood flow maps at single vessel resolution with a high temporal resolution. However, conventional speckle approaches cannot provide an absolute velocity map with magnitude and direction. Here, we report an optical speckle image velocimetry (OSIV) technique for measuring the quantitative blood flow vector map by utilizing particle image velocimetry with speckle cross-correlations. We demonstrate that our OSIV instrument has a linearity range up to 7 mm/s, higher than conventional optical methods. Our method can measure the absolute flow vector map at up to 190 Hz without sacrificing image size, and it eliminates the need for a high-speed camera/detector. We applied OSIV to image the blood flow in a mouse brain, and as a proof of concept, imaged real-time dynamic changes in the cortical blood flow field during the stroke process in vivo. Our wide-field quantitative flow measurement OSIV method without the need of tracers provides a valuable tool for studying the healthy and diseased brain.
Platelet aggregation and adhesion are critically involved in both normal hemostasis and thrombosis during vascular injury. Before any surgery, it is important to identify the number of platelets and their functionality to reduce the risk of bleeding; therefore, platelet function testing is a requirement. We introduce a novel evaluation method of assessing platelet function with laser speckle contrast imaging. The speckle decorrelation time (SDT) of the blood flowing through a microfluidic channel chip provides a quantitative measure of platelet aggregation. We compared SDTs of whole blood and platelet-poor blood, i.e., whole blood stripped of its buffy coat region, and found a marked reduction in decorrelation time for platelet-poor blood. The measured SDT of platelet-poor blood was 1.04 ± 0.21 ms, while that of whole blood was 2.64 ± 0.83 ms. To further characterize the sensitivity of our speckle decorrelation time-based platelet function testing (SDT-PFT), we added various agonists involved in platelet aggregation, including adenosine diphosphate (ADP), epinephrine (EPI), and arachidonic acid (AA). In this study, the results show that whole blood with ADP resulted in the largest SDT, followed by whole blood with AA, whole blood with EPI, whole blood without agonist, and platelet-poor blood with or without agonist. These findings show that SDT-PFT has the potential for rapid screening of bleeding disorders and monitoring of anti-platelet therapies with only a small volume of blood.
Red blood cells (RBCs) undergo irreversible biochemical and morphological changes during storage, contributing to the hemorheological changes of stored RBCs, which causes deterioration of microvascular perfusion in vivo. In this study, a home-built optofluidic system for laser speckle imaging of flowing stored RBCs through a transparent microfluidic channel was employed. The speckle decorrelation time (SDT) provides a quantitative measure of RBC changes, including aggregation in the microchannel. The SDT and relative light transmission intensity of the stored RBCs were monitored for 42 days. In addition, correlations between the decorrelation time, RBC flow speed through the channel, and relative light transmission intensity were obtained. The SDT of stored RBCs increased as the storage duration increased. The SDTs of the RBCs stored for 21 days did not significantly change. However, for the RBCs stored for over 35 days, the SDT increased significantly from 1.26 ± 0.27 ms to 6.12 ± 1.98 ms. In addition, we measured the relative light transmission intensity and RBC flow speed. As the RBC storage time increased, the relative light transmission intensity increased, whereas the RBC flow speed decreased in the microchannel. The optofluidic laser speckle image decorrelation time provides a quantitative measure of assessing the RBC condition during storage. Laser speckle image decorrelation analysis may serve as a convenient assay to monitor the property changes of stored RBCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.