Transport of multicomponent electrolyte solutions in saturated porous media is affected by the electrostatic interactions between charged species. Such Coulombic interactions couple the displacement of the different ions in the pore water and remarkably impact mass transfer not only under diffusion, but also under advection‐dominated flow regimes. To accurately describe charge effects in flow‐through systems, we propose a multidimensional modeling approach based on the Nernst‐Planck formulation of diffusive/dispersive fluxes. The approach is implemented with a COMSOL‐PhreeqcRM coupling allowing us to solve multicomponent ionic conservative and reactive transport problems, in domains with different dimensionality (1‐D, 2‐D, and 3‐D), and in homogeneous and heterogeneous media. The Nernst‐Planck‐based coupling has been benchmarked with analytical solutions, numerical simulations with another code, and high‐resolution experimental data sets. The latter include flow‐through experiments that have been carried out in this study to explore the effects of electrostatic interactions in fully three‐dimensional setups. The results of the simulations show excellent agreement for all the benchmarks problems, which were selected to illustrate the capabilities and the distinct features of the Nernst‐Planck‐based reactive transport code. The outcomes of this study illustrate the importance of Coulombic interactions during conservative and reactive transport of charged species in porous media and allow the quantification and visualization of the specific contributions to the diffusive/dispersive Nernst‐Planck fluxes, including the Fickian component, the term arising from the activity coefficient gradients, and the contribution due to electromigration.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.