Organophosphates (OPs) are neurotoxic agents also used as pesticides that can permanently block the active site of the acetylcholinesterase (AChE). A robust and sensitive detection system of OPs utilising the enzyme mimic potential of the cysteamine capped gold nanoparticles (C-AuNPs) was developed. The detection assay was performed by stepwise addition of AChE, parathion ethyl (PE)-a candidate OP, acetylcholine chloride (ACh), C-AuNPs, and 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the buffer solution. The whole sensing protocol completes in 30–40 min, including both incubations. The Transmission Electron Microscopy (TEM) results indicated that the NPs are spherical and have an average size of 13.24 nm. The monomers of C-AuNPs exhibited intense catalytic activity (nanozyme) for the oxidization of TMB, revealed by the production of instant blue colour and confirmed by a sharp peak at 652 nm. The proposed biosensor’s detection limit and linear ranges were 5.8 ng·mL−1 and 11.6–92.8 ng·mL−1, respectively, for PE. The results strongly advocate that the suggested facile colorimetric biosensor may provide an excellent platform for on-site monitoring of OPs.
The current study was conducted to assess the potential of ginger rhizome extract (Zingiber officinale) for the synthesis of silver nanoparticles (AgNPs) through the green method and its mitigating activity against pathogenic bacterial strains. AgNPs were synthesized through a simple one-step approach and characterized by UV-Visible (UV-Vis) spectroscopy, powder X-ray diffraction (PXRD), transmission electronic microscopy (TEM), and energy dispersive X-rays spectroscopy (EDS). PXRD and TEM results of AgNPs showed the face central cubic structures and predominantly spherical structures with a size of 6.5 nm. EDS analysis confirms the elemental silver in nanoparticles. Moreover, the impact of the pH, as well as temperature, during the synthesis of AgNPs has also been investigated. At 25°C and pH 5, there was no significant peak for AgNPs in the absorption spectra. However, with an increase in temperature from 25°C to 85°C and pH 5 to pH 11, particles started attaining the spherical shape of different sizes due to an increase in the reduction rate. The AgNPs displayed effective results against selected pathogenic strains, Pseudomonas aeruginosa (MTCC 424), Methicillin-resistant Staphylococcus aureus (ATCC 43300), and fungus Candida albicans (KACC 30003). The prepared AgNPs exhibited excellent antioxidant activity and catalytic reduction of methyl orange with the pseudo-first-order rate constant of 3.9 × 10−3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.