The use of graphene‐based composite as anti‐corrosion and protective coatings for metallic materials is still a provocative topic worthy of debate. Nickel–graphene nanocomposite coatings have been successfully fabricated onto the mild steel by electrochemical co‐deposition technique. This research demonstrates the properties of nickel–graphene composite coatings influenced by different electrodeposition current densities. The effect of deposition current density on the; surface morphologies, composition, microstructures, grain sizes, mechanical, and electrochemical properties of the composite coatings are executed. The coarseness of deposited coatings increases with the increasing of deposition current density. The carbon content in the composite coatings increases first and then decreases by further increasing of current density. The improved mechanical properties and superior anti‐corrosion performance of composite coatings are obtained at the peak value of current density of 9 A dm−2. The incorporation of graphene sheets into nickel metal matrix lead to enhance the micro hardness, surface roughness, and adhesion strength of produced composite coatings. Furthermore, the presence of graphene in composite coating exhibits the reduced grain sizes and the enhanced erosion–corrosion resistance properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.