Conversion of waste to wealth has been one of the ways to reduce the volume of industrial waste to disposal site, hence reducing the impact to the environment. In this work, paint sludge from an automotive industry (APS) was converted into activated carbon through chemical activation (potassium hydroxide (KOH)) using microwave pyrolysis technique. The effect of power and radiation time on the produced activated carbon were investigated and characterised (carbon content, surface area, and pore volume) to identify the possibility of application as a supercapacitor. Potassium hydroxide activation of the APS char via microwave pyrolysis has shown that power level and radiation time has influenced the yield of the APS activated carbon. A longer radiation time and higher power supply has produced activated carbon having higher carbon contents, lower impurities, higher surface area and higher pore volume. Thus, the APS activated carbon obtained via microwave pyrolysis at power supply 1000 W and 45 minutes radiation time had produced the highest surface area and total pore volume of 434.3 m2/g and 0.2901 cm3/g, respectively. However, the produced activated carbon is not suitable for the supercapacitor application as the minimum surface area requirement must be more than 1000 m2/g. The pore size of the activated APS char produced in this study was in the range of mesopores size which was also considered very poor for supercapacitor application. The outcome of this research has shown that the produced activated carbon could otherwise be used for other application than a supercapacitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.