The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds of noise. Such noise may cause deformation on the ECG heartbeat waveform, leading to cardiologists’ mislabeling or misinterpreting heartbeats due to varying types of artifacts and interference. To address this problem, some previous studies propose a computerized technique based on machine learning (ML) to distinguish between normal and abnormal heartbeats. Unfortunately, ML works on a handcrafted, feature-based approach and lacks feature representation. To overcome such drawbacks, deep learning (DL) is proposed in the pre-training and fine-tuning phases to produce an automated feature representation for multi-class classification of arrhythmia conditions. In the pre-training phase, stacked denoising autoencoders (DAEs) and autoencoders (AEs) are used for feature learning; in the fine-tuning phase, deep neural networks (DNNs) are implemented as a classifier. To the best of our knowledge, this research is the first to implement stacked autoencoders by using DAEs and AEs for feature learning in DL. Physionet’s well-known MIT-BIH Arrhythmia Database, as well as the MIT-BIH Noise Stress Test Database (NSTDB). Only four records are used from the NSTDB dataset: 118 24 dB, 118 −6 dB, 119 24 dB, and 119 −6 dB, with two levels of signal-to-noise ratio (SNRs) at 24 dB and −6 dB. In the validation process, six models are compared to select the best DL model. For all fine-tuned hyperparameters, the best model of ECG heartbeat classification achieves an accuracy, sensitivity, specificity, precision, and F1-score of 99.34%, 93.83%, 99.57%, 89.81%, and 91.44%, respectively. As the results demonstrate, the proposed DL model can extract high-level features not only from the training data but also from unseen data. Such a model has good application prospects in clinical practice.
Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.
Accurate segmentation of fetal heart in echocardiography images is essential for detecting the structural abnormalities such as congenital heart defects (CHDs). Due to the wide variations attributed to different factors, such as maternal obesity, abdominal scars, amniotic fluid volume, and great vessel connections, this process is still a challenging problem. CHDs detection with expertise in general are substandard; the accuracy of measurements remains highly dependent on humans’ training, skills, and experience. To make such a process automatic, this study proposes deep learning-based computer-aided fetal heart echocardiography examinations with an instance segmentation approach, which inherently segments the four standard heart views and detects the defect simultaneously. We conducted several experiments with 1149 fetal heart images for predicting 24 objects, including four shapes of fetal heart standard views, 17 objects of heart-chambers in each view, and three cases of congenital heart defect. The result showed that the proposed model performed satisfactory performance for standard views segmentation, with a 79.97% intersection over union and 89.70% Dice coefficient similarity. It also performed well in the CHDs detection, with mean average precision around 98.30% for intra-patient variation and 82.42% for inter-patient variation. We believe that automatic segmentation and detection techniques could make an important contribution toward improving congenital heart disease diagnosis rates.
The interpretation of Myocardial Infarction (MI) via electrocardiogram (ECG) signal is a challenging task. ECG signals' morphological view show significant variation in different patients under different physical conditions. Several learning algorithms have been studied to interpret MI. However, the drawback of machine learning is the use of heuristic features with shallow feature learning architectures. To overcome this problem, a deep learning approach is used for learning features automatically, without conventional handcrafted features. This paper presents sequence modeling based on deep learning with recurrent network for ECG-rhythm signal classification. The recurrent network architecture such as a Recurrent Neural Network (RNN) is proposed to automatically interpret MI via ECG signal. The performance of the proposed method is compared to the other recurrent network classifiers such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The objective is to obtain the best sequence model for ECG signal processing. This paper also aims to study a proper data partitioning ratio for the training and testing sets of imbalanced data. The large imbalanced data are obtained from MI and healthy control of PhysioNet: The PTB Diagnostic ECG Database 15-lead ECG signals. According to the comparison result, the LSTM architecture shows better performance than standard RNN and GRU architecture with identical hyper-parameters. The LSTM architecture also shows better classification compared to standard recurrent networks and GRU with sensitivity, specificity, precision, F1-score, BACC, and MCC is 98.49%, 97.97%, 95.67%, 96.32%, 97.56%, and 95.32%, respectively. Apparently, deep learning with the LSTM technique is a potential method for classifying sequential data that implements time steps in the ECG signal.Algorithms 2019, 12, 118 2 of 12 records electrical signals related to heart activity and producing a voltage-chart cardiac rate and being a cardiological test that has been used in the past 100 years [7]. ECG signals have three different waveforms for each cardiac cycle: P wave, QRS complex, and T wave in normal rate [8]. In other cases, ECG form changes in the T waveform, the ST interval length, and ST elevation. Its morphology causes a cardiac abnormality, i.e., Ischemic Heart Disease (IHD) [9]. The IHD is the single largest cause of the main contributors to the disease burden in developing countries [10]. The two leading manifestations of IHD are angina and Acute Myocardial Infarction (MI) [10]. Angina is the characteristic caused by atherosclerosis leading to stenosis of one or more coronary arteries. Then, MI occurs due to a lack of oxygen demand in the cardiac muscle tissue. If cardiac muscle activity increases, oxygen demand also increases [11]. MI is the most dangerous form of IHD with the highest mortality rate [10].MI is usually diagnosed by changes in the ECG due to the increase of serum enzymes, such as creatine phosphokinase and troponin T or I [10]. ECG is the most reliable tool for interpreting ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.