Dirac and Weyl semimetals are new discovered topological nontrivial materials with the linear band dispersions around the Dirac/Weyl points. When applying non-orthogonal electric current and magnetic field, an exotic phenomenon called chiral anomaly arises and negative longitudinal resistance can be detected. Recently, a new phenomenon named planer Hall effect (PHE) is considered to be another indication of chiral anomaly which has been observed in many topological semimetals.
However, it still remains a question that is the PHE only attributed to chiral anomaly?Here we demonstrate the PHE in a new-discovered type-II Dirac semimetal NiTe2 by low temperature transport. However, after detailed analysis, we conclude that the PHE results from the trivial orbital magnetoresistance. This work reveals that PHE is not a sufficient condition of chiral anomaly and one need to take special care of other non-topological contribution in such studies.
Recent research on intrinsic magnetic topological insulators (MTIs), MnBi2Te4, sheds new light on the observation of a long-expected high-temperature quantum anomalous Hall effect (QAHE). However, the strong interlayered anti-ferromagnetic (AFM) coupling hinders the practical applications without applying a magnetic field. Thus, how to adjust the magnetism of this compound under zero field is essential. Here, we theoretically and experimentally study the magnetic properties of two new promising intrinsic MTI candidates MnBi4Te7 and MnBi6Te10, formed by intercalating the Bi2Te3 layer into MnBi2Te4. The first-principles calculations reveal that the relative energy between ferromagnetic (FM) and AFM states is greatly reduced by Bi2Te3 intercalations. The calculated energy barriers for the spin flipping process also point out that the metastable FM state is more easily retained by intercalation. Meanwhile, we also experimentally carry out magnetic and transport measurements on these materials. By increasing Bi2Te3 intercalations, the AFM coupling becomes weaker, and an almost fully polarized FM state can be preserved in MnBi6Te10 at low temperatures, which are consistent with our calculations. We believe that the demonstration of the intrinsic MTI preserving zero-field FM state and the in-depth investigation for the mechanism behind pave the way for investigating the high-temperature QAHE and the related physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.