The development of graphene based metal and metal oxide nano composites is reviewed with special focus on their synthesis and their applications in electronics, batteries, solar cells and analytics.
The synthesis of in situ polymer‐functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the carbon coating improves rate performance. The combination of small particle size and homogeneous carbon coating allows for the excellent electrochemical performance of anatase TiO2 at high (134 mAh g−1 at 10 C (3.35 A g−1)) and low (≈227 mAh g−1 at 0.1 C) current rates, high cycling stability (full capacity retention between 2nd and 300th cycle at 1 C) and improved coulombic efficiency (≈99.8%).
Inspired from the funtioning and responsiveness of biological ion channels, researchers attempt to develop biosensing systems based on polymer and solid-state nanochannels. The applicability of these nanochannels for detection/sensing of any foreign analyte in the surrounding environment depends critically on the surface characteristics of the inner walls. Attaching recognition sites to the channel walls leads to the preparation of sensors targeted at a specific molecule. There are many nanochannel platforms for the detection of DNA and proteins, but only a few are capable of detecting small molecules. Here, we describe a nanochannel platform for the detection of hydrogen peroxide, H(2)O(2), which is not only a toxic waste product in the cellular systems but also a key player in the redox signaling pathways. The sensor is based on single conical nanochannels fabricated in an ion tracked polymer membrane. The inner walls of the channel are decorated with horseradish peroxidase (HRP) enzyme using carbodiimide coupling chemistry. The success of the HRP immobilization on the channel surface is confirmed by measuring the pH-dependent current-voltage (I-V) curves of the system. The reported HRP-nanochannel system detects nanomolar concentrations of H(2)O(2) with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as the substrate. The immobilized HRP enzyme is thus capable of inducing redox reactions in a subfemtoliter volume of single nanochannels. We demonstrate that functioning of the designed biosensor is reversible and can be used multiple times to detect H(2)O(2) at various concentrations.
Sulfite oxidase is a mitochondria-located molybdenum-containing enzyme catalyzing the oxidation of sulfite to sulfate in the amino acid and lipid metabolism. Therefore, it plays a major role in detoxification processes, where defects in the enzyme cause a severe infant disease leading to early death with no efficient or cost-effective therapy in sight. Here we report that molybdenum trioxide (MoO3) nanoparticles display an intrinsic biomimetic sulfite oxidase activity under physiological conditions, and, functionalized with a customized bifunctional ligand containing dopamine as anchor group and triphenylphosphonium ion as targeting agent, they selectively target the mitochondria while being highly dispersible in aqueous solutions. Chemically induced sulfite oxidase knockdown cells treated with MoO3 nanoparticles recovered their sulfite oxidase activity in vitro, which makes MoO3 nanoparticles a potential therapeutic for sulfite oxidase deficiency and opens new avenues for cost-effective therapies for gene-induced deficiencies.
A method for mesoporous supraparticle synthesis on superamphiphobic surfaces is designed. Therefore, supraparticles assembled with nanoparticles are synthesized by the evaporation of nanoparticle dispersion drops on the superamphiphobic surface. For synthesis, no further purification is required and no organic solvents are wasted. Moreover, by changing the conditions such as drop size and concentration, supraparticles of different sizes, compositions, and architectures are fabricated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.