In this paper, we noticed that the existence of fixed points of F-contractions, in F -metric space, can be ensured without the third condition (F3) imposed on the Wardowski function F : ( 0 , ∞ ) → R . We obtain fixed points as well as common fixed-point results for Reich-type F-contractions for both single and set-valued mappings in F -metric spaces. To show the usability of our results, we present two examples. Also, an application to functional equations is presented. The application shows the role of fixed-point theorems in dynamic programming, which is widely used in computer programming and optimization. Our results extend and generalize the previous results in the existing literature.
In this paper, we manifest some coincidence and common fixed point theorems for four self-mappings satisfying Círíc-type and Hardy–Rogers-type (αs,F)-contractions defined on an αs-complete b-metric space. We apply these results to infer several new and old corresponding results in ordered b-metric spaces and graphic b-metric spaces. Our work generalizes several recent results existing in the literature. We present examples to validate our results. We discuss an application of main result to show the existence of common solution of the system of Volterra type integral equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.