This study deals with both a decision model for making decisions under epistemic uncertainty and how to use it for selecting optimal materials under the same uncertainty. In particular, the proposed decision model employs a set of possibilistic objective functions defined by fuzzy numbers to handle a set of conflicting criteria. In addition, the model can calculate the compliance of a piece of decision-relevant (imprecise) information with a given objective function. Moreover, the model is capable to aggregate the calculated compliances for the sake of ranking a given set of alternatives against the set of conflicting criteria. The problem of selecting materials for making the body of a vehicle is considered as an example. In this problem, the indices for selecting the materials are unknown because the specifications regarding the vehicle body are not given. In addition, the data relevant to material properties entails a great deal of imprecision. The presented decision model can quantify the above-mentioned epistemic uncertainty in a lucid manner and generate a list of optimal materials.
Policymakers, practitioners, and researchers around the globe have been acting in a coordinated manner, yet remaining independent, to achieve the seventeen Sustainable Development Goals (SDGs) defined by the United Nations. Remarkably, SDG-centric activities have manifested a huge information silo known as big data. In most cases, a relevant subset of big data is visualized using several two-dimensional plots. These plots are then used to decide a course of action for achieving the relevant SDGs, and the whole process remains rather informal. Consequently, the question of how to make a formal decision using big data-generated two-dimensional plots is a critical one. This article fills this gap by presenting a novel decision-making approach (method and tool). The approach formally makes decisions where the decision-relevant information is two-dimensional plots rather than numerical data. The efficacy of the proposed approach is demonstrated by conducting two case studies relevant to SDG 12 (responsible consumption and production). The first case study confirms whether or not the proposed decision-making approach produces reliable results. In this case study, datasets of wooden and polymeric materials regarding two eco-indicators (CO2 footprint and water usage) are represented using two two-dimensional plots. The plots show that wooden and polymeric materials are indifferent in water usage, whereas wooden materials are better than polymeric materials in terms of CO2 footprint. The proposed decision-making approach correctly captures this fact and correctly ranks the materials. For the other case study, three materials (mild steel, aluminum alloys, and magnesium alloys) are ranked using six criteria (strength, modulus of elasticity, cost, density, CO2 footprint, and water usage) and their relative weights. The datasets relevant to the six criteria are made available using three two-dimensional plots. The plots show the relative positions of mild steel, aluminum alloys, and magnesium alloys. The proposed decision-making approach correctly captures the decision-relevant information of these three plots and correctly ranks the materials. Thus, the outcomes of this article can help those who wish to develop pragmatic decision support systems leveraging the capacity of big data in fulfilling SDGs.
Real world scheduling problems are complex in nature. They require satisfying multiple objectives. To get a realistic schedule, consideration of machine reliability and availability is very important to allocate job in machine. This research aims to develop two fuzzy inference systems (FIS) for hybrid flow shop problem. First FIS is used to get priority of each job considering multiple objectives of processing time, due date and cost over time. Second FIS is used to get machine reliability and availability based priority using the information of mean time to failure (MTTF) & mean time to repair (MTTR) of each individual machine at each stage. To distribute the workload depending on their reliability and availability based priority of each machine, maximum utilization target is determined. An algorithm has been developed for grouping, sequencing & allocating the jobs to the machines at every stage in such a way that total percentage of over utilization will minimum. Based on this algorithm, a computing tool has been developed and, explained with a three stage hybrid flow shop scheduling problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.