The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.
Various techniques using artificial intelligence (AI) have resulted in a significant contribution to field of medical image and video-based diagnoses, such as radiology, pathology, and endoscopy, including the classification of gastrointestinal (GI) diseases. Most previous studies on the classification of GI diseases use only spatial features, which demonstrate low performance in the classification of multiple GI diseases. Although there are a few previous studies using temporal features based on a three-dimensional convolutional neural network, only a specific part of the GI tract was involved with the limited number of classes. To overcome these problems, we propose a comprehensive AI-based framework for the classification of multiple GI diseases by using endoscopic videos, which can simultaneously extract both spatial and temporal features to achieve better classification performance. Two different residual networks and a long short-term memory model are integrated in a cascaded mode to extract spatial and temporal features, respectively. Experiments were conducted on a combined dataset consisting of one of the largest endoscopic videos with 52,471 frames. The results demonstrate the effectiveness of the proposed classification framework for multi-GI diseases. The experimental results of the proposed model (97.057% area under the curve) demonstrate superior performance over the state-of-the-art methods and indicate its potential for clinical applications.
Breast cancer is the leading cause of mortality in women. Early diagnosis of breast cancer can reduce the mortality rate. In the diagnosis, the mitotic cell count is an important biomarker for predicting the aggressiveness, prognosis, and grade of breast cancer. In general, pathologists manually examine histopathology images under high-resolution microscopes for the detection of mitotic cells. However, because of the minute differences between the mitotic and normal cells, this process is tiresome, time-consuming, and subjective. To overcome these challenges, artificial-intelligence-based (AI-based) techniques have been developed which automatically detect mitotic cells in the histopathology images. Such AI techniques accelerate the diagnosis and can be used as a second-opinion system for a medical doctor. Previously, conventional image-processing techniques were used for the detection of mitotic cells, which have low accuracy and high computational cost. Therefore, a number of deep-learning techniques that demonstrate outstanding performance and low computational cost were recently developed; however, they still require improvement in terms of accuracy and reliability. Therefore, we present a multistage mitotic-cell-detection method based on Faster region convolutional neural network (Faster R-CNN) and deep CNNs. Two open datasets (international conference on pattern recognition (ICPR) 2012 and ICPR 2014 (MITOS-ATYPIA-14)) of breast cancer histopathology were used in our experiments. The experimental results showed that our method achieves the state-of-the-art results of 0.876 precision, 0.841 recall, and 0.858 F1-measure for the ICPR 2012 dataset, and 0.848 precision, 0.583 recall, and 0.691 F1-measure for the ICPR 2014 dataset, which were higher than those obtained using previous methods. Moreover, we tested the generalization capability of our technique by testing on the tumor proliferation assessment challenge 2016 (TUPAC16) dataset and found that our technique also performs well in a cross-dataset experiment which proved the generalization capability of our proposed technique.
Medical-image-based diagnosis is a tedious task‚ and small lesions in various medical images can be overlooked by medical experts due to the limited attention span of the human visual system, which can adversely affect medical treatment. However, this problem can be resolved by exploring similar cases in the previous medical database through an efficient content-based medical image retrieval (CBMIR) system. In the past few years, heterogeneous medical imaging databases have been growing rapidly with the advent of different types of medical imaging modalities. Recently, a medical doctor usually refers to various types of imaging modalities all together such as computed tomography (CT), magnetic resonance imaging (MRI), X-ray, and ultrasound, etc of various organs in order for the diagnosis and treatment of specific disease. Accurate classification and retrieval of multimodal medical imaging data is the key challenge for the CBMIR system. Most previous attempts use handcrafted features for medical image classification and retrieval, which show low performance for a massive collection of multimodal databases. Although there are a few previous studies on the use of deep features for classification, the number of classes is very small. To solve this problem, we propose the classification-based retrieval system of the multimodal medical images from various types of imaging modalities by using the technique of artificial intelligence, named as an enhanced residual network (ResNet). Experimental results with 12 databases including 50 classes demonstrate that the accuracy and F1.score by our method are respectively 81.51% and 82.42% which are higher than those by the previous method of CBMIR (the accuracy of 69.71% and F1.score of 69.63%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.