Improving a vehicle driver’s performance decreases the damage caused by, and chances of, road accidents. In recent decades, engineers and researchers have proposed several strategies to model and improve driving monitoring and assistance systems (DMAS). This work presents a comprehensive survey of the literature related to driving processes, the main reasons for road accidents, the methods of their early detection, and state-of-the-art strategies developed to assist drivers for a safe and comfortable driving experience. The studies focused on the three main elements of the driving process, viz. driver, vehicle, and driving environment are analytically reviewed in this work, and a comprehensive framework of DMAS, major research areas, and their interaction is explored. A well-designed DMAS improves the driving experience by continuously monitoring the critical parameters associated with the driver, vehicle, and surroundings by acquiring and processing the data obtained from multiple sensors. A discussion on the challenges associated with the current and future DMAS and their potential solutions is also presented.
Melanoma is considered a fatal type of skin cancer. However, it is sometimes hard to distinguish it from nevus due to their identical visual appearance and symptoms. The mortality rate because of this disease is higher than all other skin-related consolidated malignancies. The number of cases is growing among young people, but if it is diagnosed at an earlier stage, then the survival rates become very high. The cost and time required for the doctors to diagnose all patients for melanoma are very high. In this paper, we propose an intelligent system to detect and distinguish melanoma from nevus by using the stateof-the-art image processing techniques. At first, the Gaussian filter is used for removing noise from the skin lesion of the acquired images followed by the use of improved K-mean clustering to segment out the lesion. A distinctive hybrid superfeature vector is formed by the extraction of textural and color features from the lesion. Support vector machine (SVM) is utilized for the classification of skin cancer into melanoma and nevus. Our aim is to test the effectiveness of the proposed segmentation technique, extract the most suitable features, and compare the classification results with the other techniques present in the literature. The proposed methodology is tested on the DERMIS dataset having a total number of 397 skin cancer images: 146 are melanoma and 251 are nevus skin lesions. Our proposed methodology archives encouraging results having 96% accuracy. INDEX TERMS Melanoma, nevus, feature, K-means clustering, and centroid selection.
Tracking drivers’ eyes and gazes is a topic of great interest in the research of advanced driving assistance systems (ADAS). It is especially a matter of serious discussion among the road safety researchers’ community, as visual distraction is considered among the major causes of road accidents. In this paper, techniques for eye and gaze tracking are first comprehensively reviewed while discussing their major categories. The advantages and limitations of each category are explained with respect to their requirements and practical uses. In another section of the paper, the applications of eyes and gaze tracking systems in ADAS are discussed. The process of acquisition of driver’s eyes and gaze data and the algorithms used to process this data are explained. It is explained how the data related to a driver’s eyes and gaze can be used in ADAS to reduce the losses associated with road accidents occurring due to visual distraction of the driver. A discussion on the required features of current and future eye and gaze trackers is also presented.
Forecasting academic performance of student has been a substantial research inquest in the Educational Data-Mining that utilizes Machine-learning (ML) procedures to probe the data of educational setups. Quantifying student academic performance is challenging because academic performance of students hinges on several factors. The in hand research work focuses on students' grade and marks prediction utilizing supervised ML approaches. The data-set utilized in this research work has been obtained from the Board of Intermediate & Secondary Education (B.I.S.E) Peshawar, Khyber Pakhtunkhwa. There are 7 areas in BISEP i.e., Peshawar, FR-Peshawar, Charsadda, Khyber, Mohmand and Upper and Lower Chitral. This paper aims to examine the quality of education that is closely related to the aims of sustainability. The system has created an abundance of data which needs to be properly analyzed so that most useful information should be obtained for planning and future development. Grade and marks forecasting of students with their historical educational record is a renowned and valuable application in the EDM. It becomes an incredible information source that could be utilized in various ways to enhance the standard of education nationwide. Relevant research study reveals that numerous methods for academic performance forecasting are built to carryout improvements in administrative and teaching staff of academic organizations. In the put forwarded approach, the acquired data-set is pre-processed to purify the data quality, the labeled academic historical data of student (30 optimum attributes) is utilized to train regression model and DT-classifier. The regression will forecast marks, while grade will be forecasted by classification system, eventually analyzed the results obtained by the models. The results obtained show that machine learning technology is efficient and relevant for predicting students performance.
Texture analysis on CT images is a potential method in the characterization of oral cancers involving the buccal mucosa and deserves further investigation as a predictor of tumour aggression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.