In robotic assistive devices, the determination of required assistance is vital for proper functioning of assistive control. This paper presents a novel solution to measure conveniently and accurately carried payload in order to estimate the required assistance level. The payload is estimated using upper arm forcemyography (FMG) through a sensor band made of force sensitive resistors. The sensor band is worn on the upper arm and is able to measure the change of normal force applied due to muscle contraction. The readings of the sensor band are processed using support vector machine (SVM) regression technique to estimate the payload. The developed method was tested on human subjects, carrying a payload. Experiments were further conducted on an upper-body exoskeleton to provide the required assistance. The results show that the developed method is able to estimate the load carrying status, which can be used in exoskeleton control to provide effectively physical assistance needed.
Human intention detection is fundamental to the control of robotic devices in order to assist humans according to their needs. This paper presents a novel approach for detecting hand motion intention, i.e., rest, open, close, and grasp, and grasping force estimation using force myography (FMG). The output is further used to control a soft hand exoskeleton called an SEM Glove. In this method, two sensor bands constructed using force sensing resistor (FSR) sensors are utilized to detect hand motion states and muscle activities. Upon placing both bands on an arm, the sensors can measure normal forces caused by muscle contraction/relaxation. Afterwards, the sensor data is processed, and hand motions are identified through a threshold-based classification method. The developed method has been tested on human subjects for object-grasping tasks. The results show that the developed method can detect hand motions accurately and to provide assistance w.r.t to the task requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.