UMKM di Kota Bogor merupakan UMKM yang mengalami perkembangan yang signifikan dari tahun ke tahun. Pada tahun 2019, di Kota Bogor tercatat ada sekitar 30.822 usaha UMKM yang didominasi sektor kuliner 60 persen, kerajinan 30 persen dan 10 persen lainnya adalah sektor batik. Dengan adanya pertumbuhan UMKM yang signifikan tersebut, maka akan berpengaruh terhadap persaingan UMKM yang semakin meningkat dan akan semakin sulit untuk melihat peta persaingan pada UMKM, khususnya pada sektor kuliner. Sehingga untuk mengatasi persaingan tersebut salah satu cara yang dapat dilakukan adalah melihat sentimen konsumen terhadap UMKM tersebut. Salah satu metode yang dapat digunakan dalam menyelesaikan permasalahan tersebut, adalah metode <em>Data Mining</em><em>.</em> Pada metode <em>Data Mining</em>, terdapat beberapa algoritma popular yang sering digunakan. Dan salah satu algoritma yang popular itu adalah algoritma <em>K-Nearest Neighbor</em><em> (K-NN).</em> Algoritma KNN dapat digunakan pada berbagai kasus penelitian, seperti <em>multi-class classification, binary classification</em> dan <em>multi-label classification</em> yang dapat membantu dalam memprediksi berbagai kasus di kehidupan sehari-hari. Sehingga dalam hal ini, kami mengusulkan sebuah ide baru, yaitu penerapan <em>Big Data </em>menggunakan algoritma <em>Multi-Label K-Nearest Neighbor </em>atau ML-KNN dalam analisis sentimen konsumen terhadap UMKM sektor kuliner di Kota Bogor. Ide atau gagasan tersebut dapat bermanfaat bagi pelaku UMKM sektor kuliner di Kota Bogor dalam mengetahui <em>insight </em>atau wawasan dari hasil analisis sentimen konsumen terhadap UMKM dan dapat membantu untuk pengambilan sebuah keputusan bisnis dalam meningkatkan daya saingnya terhadap kompetitor atau UMKM sektor kuliner yang berada di Kota Bogor.
In early 2020, countries in the world were shocked by the outbreak of a new virus, namely SARS-CoV-2 and the disease was named Coronavirus 2019 (Covid-19). It is known that the virus originated in Wuhan, China and was discovered at the end of December 2019. Based on data on July 18, 2020, there are more than 180 countries that have contracted Covid-19 with a total of 13,824,739 confirmed cases since December 31, 2019. Based on data on positive cases of Covid- 19 above, the average patient has several clinical symptoms, one of which is having difficulty breathing due to a large pneumonia infiltrate in the lungs. Therefore, it is necessary to implement an automatic pulmonary diagnosis system as an alternative to prevent the increasingly widespread spread of Covid-19. Covid-19 can be detected in the lungs through digital image processing of chest X-ray using the Convolutional Neural Network (CNN) algorithm. CNN is a Deep Learning method that functions to identify digital images. In this study, three different scenarios were used. This scenario aims to find the best model using hyperparameter tunnning. The results of ROC analysis and confusion matrix show that in scenarios I, II and III get 94%, 95% and 93% accuracy.
Algoritma Deep Learning merupakan bagian dari Machine Learning berbasis Jaringan Saraf Tiruan (JST). Metode yang akan dibahas pada penelitian ini yaitu metode Autoencoder, merupakan sebuah metode yang memiliki dua bagian utama yaitu Encoder dan Decoder.Autoencoder memiliki jumlah input dan output yang sama, dan selalu berbentuk simetris atau seperti jam pasir. Penderita kanker di Indonesia semakin meningkat setiap saat, menurut data terbaru dari Kementrian Kesehatan Indonesia penderia kanker lebih dari 347.000 penduduk.(Kemenkes, 2017). Penelitian mengenai kanker telah berkembang dengan pesat salah satunya dengan metode Deep Learning. Tujuan penelitian ini mengetahui nilai akurasi model prediksi yang dihasilkan. Adapun Manfaat yang dapat diambil dari penelitian ini diantaranyaMengetahui akurasi metode Deep Learning pada Autoencoder yang dapat dijadikan bahan acuan perbandingan
In development planning, a village must have a plan that can be used as a reference in implementing the development of a village, both in terms of physical and non-physical development. In accordance with Article 4 of Permendagri No. 114/2014, village development plans are prepared in a time-framed manner including: Village Medium-Term Development Plans (RPJM Desa) for a period of 6 years; and the Village Annual Development Plan or the so-called Village Government Work Plan (RKP Desa), is an elaboration of the Village RPJM for a period of 1 (one) year and is stipulated by village regulations. The method used in the preparation of the Paku Village Medium-Term Development Plan to realize a disaster-responsive village is the method of discussion or exchanging ideas between village officials. The initial stage of preparation in the preparation of the Village RPJM to be able to realize a disaster-responsive nail village. The discussion stage for the preparation of the RPJMDes of Paku Village was carried out at the Paku Village Head's Office and assisted by the Head of the RPJMDes Preparation Team, namely Mr. Kusnadiansyah and the Paku Village Head discussing the disaster response village.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.