For Engineers involved in planning and construction of water resources building, hydrology becomes very important data. In terms of planning stage in water resources especially waterworks, it is known that design flood discharge closed to field realistic conditions is often needed in order that a planned construction is able to control flood discharge. Several previous researches in choosing flood discharge selection method have diverse depending on observed watershed. One method in determining selected flood discharge by verification using Creager diagram, by comparing discharge calculation results of several Synthetic Unit Hydrograph (SUH) with infrastructure flood discharge (AWLR result) in observation point. This research aims to obtain the most suitable synthetic unit hydrograph and close to analysis result of measured discharge frequency, and Creager diagram in Kelara watershed (DAS). Based on the calculation of design flood discharge according to rainfall data using synthetic unit hydrograph of Nakayasu, ITB I, ITB II, and SCS (HEC-HMS) as well as the calculation of design flood discharge according to collected data, it is concluded that the synthetic unit hydrograph method closest to design flood discharge with measured discharge rate and Q1000 rate of Creager diagram is SCS. Flood discharge rate obtained according to HSS SCS method using HEC-HMS 4.8 application in period of 2 years is 658,40 m3/s, 25 years is 682,70 m3/s, 50 years is 787,00 m3/s, 100 years is 885,70 m3/det, and 1000 years is 1202,60 m3/s
Flood historical data from the Kelara River in the last 10 years shows that the river has often overflowed, and the worst floods happened on January 22, 2019. One of the efforts to minimize the negative impact of a flood disaster is to conduct flood tracking. Flood tracking is an analysis of the flood along the river, or also known as flood propagation, which can be used as a reference in the preparation of a flood early warning system. This study aims to determine the propagation of the Kelara River flood which can be used to determine flood-prone areas and as a reference in the preparation of a flood early warning system. This research was carried out in 3 stages, namely flood hydrology analysis using the HEC-HMS program, numerical simulation of 2D floods using the HEC-RAS program, spatial modeling of flood-prone areas using the ArcGIS program, and preparation of a flood early warning system. The results of this study showed that the flood that occurred on January 22, 2019, was a 100-year return period flood, and determined that 10 points of residential areas/villages must be alerted when the intensity of rain is high, with the fastest time to be alerted being 52 minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.