The weakness of full-scale testing of reinforced concrete elements in a laboratory is the long period, both to prepare and test specimens and the high-cost, resulting in a limited number of specimens. The heavy specimen creates another difficulty during set-up. Data accuracy depends on apparatus precision, laboratory conditions, and the technicians' expertise in experimenting. A finite element model was constructed to simulate a reinforced concrete element subject to high flexure and shear stresses induced by vertical and horizontal forces to overcome these constraints. The model can further be utilized to evaluate the effects of independent variables on the behavior of the member. The model was validated both numerically and experimentally to ensure accuracy and precision. The numerical validation was conducted through a sensitivity analyses process on the finesses of meshing and loading incrementation. At the same time, the load-deformation data and the crack propagation of identical laboratory-tested elements were utilized for validation of the experimental data. It was proven that the developed model predicts the behavior of the beam to a high degree of correctness. The model can further be used as a tool for analyses in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.