In the current study, since nanofluids have a high thermal resistance, and because non-Newtonian (Ree-Eyring) fluid movement on a stretching sheet by means of suspended nanoparticles AA7072-AA7075 is used, the proposed mathematical model takes into account the influence of magnetic dipoles and the Koo-Kleinstreuer model. The Cattaneo-Christov model is used to calculate heat transfer in a two-dimensional flow of Ree-Eyring nanofluid across a stretching sheet, and viscous dissipation is taken into account. The base liquid water with suspended nanoparticles AA7072-AA7075 is considered in this study. The PDEs are converted into ODEs by exhausting similarity transformations. The numerical solution of the altered equations is then performed utilising the HAM. To examine the performance of velocity, temperature profiles, concentration profiles, skin friction, the Nusselt number, and the Sherwood number, a graphical analysis is carried out for various parameters. The new model’s key conclusions are that the AA7075 alloy outperforms the AA7072 alloy in terms of thermal performance as the volume fraction and ferro-magnetic interaction constraint rise. Additionally, the rate of heat transmission and the skin friction coefficient improve as the volume fraction rises.
Nanofluids are extremely useful to investigators due to their greater heat transfer rates, which have significant applications in multiple industries. The primary objective of this article is to look into the effect of viscous dissipation in Sisko nano liquid flow with gold nanoparticles on a porous stenosis artery. Heat transfer properties were explored. Blood was utilized as a base fluid for nanoparticles. To renovate the governing nonlinear PDEs into nonlinear ODEs, appropriate transformations were used. The bvp4c-based shooting method, via MATLAB, was used to determine the numerical results of the nonlinear ODEs. Furthermore, flow forecasts for each physical quantity were explored. To demonstrate the physical influences of flow constraints versus presumed flow fields, physical explanations were used. The findings demonstrated that the velocity contour improved as the volume fraction, curvature, power law index, and material parameter upsurged. For the Prandtl number, the volume fraction of nanoparticles, the index of the power law, and the temperature profile of the nanofluid declined. Furthermore, the drag force and transfer of the heat were also investigated as explanations for influences on blood flow. Further, the Nusselt number reduced and the drag force enhanced as the curvature parameter values increased. The modeling and numerical solutions play an impressive role in predicting the cause of atherosclerosis.
The effect of entropy optimization on an axisymmetric Darcy–Forchheimer Powell–Eyring nanofluid flow caused by a horizontally permeable stretching cylinder, as well as non-linear thermal radiation, was investigated in this research work. The leading equations of the current problem were changed into ODEs by exhausting appropriate transformations. To deduce the reduced system, the numerical method bvp4c was used. The outcome of non-dimensional relevant factors on velocity, entropy, concentration, temperature, Bejan number, drag force, and Nusselt number is discussed and demonstrated using graphs and tables. It is perceived that, with a higher value of volume fraction parameter, the skin friction falls down. Likewise, it is found that the Nusselt number drops with enhancing the value of the volume fraction. Moreover, the result reveals that the entropy generation increases as the volume fraction, curvature parameter, and Brinkman number increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.