Sign language recognition is challenging due to the lack of communication between normal and affected people. Many social and physiological impacts are created due to speaking or hearing disability. A lot of different dimensional techniques have been proposed previously to overcome this gap. A sensor-based smart glove for sign language recognition (SLR) proved helpful to generate data based on various hand movements related to specific signs. A detailed comparative review of all types of available techniques and sensors used for sign language recognition was presented in this article. The focus of this paper was to explore emerging trends and strategies for sign language recognition and to point out deficiencies in existing systems. This paper will act as a guide for other researchers to understand all materials and techniques like flex resistive sensor-based, vision sensor-based, or hybrid system-based technologies used for sign language until now.
Back pain is the leading cause of disability worldwide. Its emergence relates not only to the musculoskeletal degeneration biological substrate but also to psychosocial factors; emotional components play a pivotal role. In modern society, people are significantly informed by the Internet; in turn, they contribute social validation to a “successful” digital information subset in a dynamic interplay. The Affective component of medical pages has not been previously investigated, a significant gap in knowledge since they represent a critical biopsychosocial feature. We tested the hypothesis that successful pages related to spine pathology embed a consistent emotional pattern, allowing discrimination from a control group. The pool of web pages related to spine or hip/knee pathology was automatically selected by relevance and popularity and submitted to automated sentiment analysis to generate emotional patterns. Machine Learning (ML) algorithms were trained to predict page original topics from patterns with binary classification. ML showed high discrimination accuracy; disgust emerged as a discriminating emotion. The findings suggest that the digital affective “successful content” (collective consciousness) integrates patients’ biopsychosocial ecosystem, with potential implications for the emergence of chronic pain, and the endorsement of health-relevant specific behaviors. Awareness of such effects raises practical and ethical issues for health information providers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.