Seed dormancy is an important agronomic trait in cereals and leguminous crops as low levels of seed dormancy during harvest season, coupled with high humidity, can cause preharvest sprouting. Seed longevity is another critical trait for commercial crop propagation and production, directly influencing seed germination and early seedling establishment. Both traits are precisely regulated by the integration of genetic and environmental cues. Despite the significance of these two traits in crop production, the relationship between them at the molecular level is still elusive, even with contradictory conclusions being reported. Some studies have proposed a positive correlation between seed dormancy and longevity in association with differences in seed coat permeability or seed reserve accumulation, whereas an increasing number of studies have highlighted a negative relationship, largely with respect to phytohormone-dependent pathways. In this review paper, we try to provide some insights into the interactions between regulatory mechanisms of genetic and environmental cues, which result in positive or negative relationships between seed dormancy and longevity. Finally, we conclude that further dissection of the molecular mechanism responsible for this apparently contradictory relationship between them is needed.
The growing pollen tube has become one of the most fascinating model cell systems for investigations into cell polarity and polar cell growth in plants. Rapidly growing pollen tubes achieve tip-focused cell expansion by vigorous anterograde exocytosis, through which various newly synthesized macromolecules are directionally transported and deposited at the cell apex. Meanwhile, active retrograde endocytosis counter balances the exocytosis at the tip which is believed to recycle the excessive exocytic components for multiple rounds of secretion. Therefore, apical exocytosis and endocytosis are the frontline cellular processes which drive the polar growth of pollen tubes, although they represent opposite vesicular trafficking events with distinct underpinning mechanisms. Nevertheless, the molecular basis governing the spatiotemporal crosstalk and counterbalance of exocytosis and endocytosis during pollen tube polarization and growth remains elusive. Here we discuss recent insight into exocytosis and endocytosis in sculpturing high rates of polarized pollen tube growth. In addition, we especially introduce the novel integration of mathematical modeling in uncovering the mysteries of cell polarity and polar cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.