As public service facilities, urban parks offer many benefits for daily life and social activities for residents. However, the accessibility of public parks to urban residents is often unevenly distributed in spaces that cannot be utilized fully. Here, we used the urban parks in Beijing, China as a case study and examined the relationship between urban park accessibility and population distribution at different administrative levels. Gini coefficient and Lorenz curve were used to evaluate the social equity of urban park accessibility, and the location quotient was used to identify the spatial difference between urban parks and resident population. The results of our study show that the urban park accessibility varies at district and subdistrict levels and that places with more urban parks usually have higher accessibility. Very importantly, the spatial equity is different from the social equity, a mismatch exists between the spatial distribution of urban parks and population, particularly for the elderly residents. These results generate valuable insights, as, in China and many developing countries, current urban public green space planning only uses the ratio of public green space to urban construction land and the per capita public green area.
One of the essential anthropogenic influences on urban climate is land-use/land-cover (LULC) change due to urbanization, which has a direct impact on land surface temperature (LST). However, LULC changes affect LST, and further, urban heat island (UHI) still needs to be investigated. In this study, we estimated changes in LULC from 1993 to 2018, its warming (positive) and cooling (negative) effect, and their contribution to relative LST (RLST) in the city of Islamabad using satellite remote-sensing data. The LULC was classified using a random forest (RF) classifier, and LST was retrieved by a standardized radiative transfer equation (RTE). Our results reveal that the impervious surfaces has increased by 11.9% on the cost of declining barren land, forest land, grass/agriculture land, and water bodies in the last 26 years. LULC conversion contributed warming effects such as forest land, water bodies, and grass/agriculture land transformed into impervious surfaces, inducing a warming contribution of 1.52 °C. In contrast, the replacement of barren land and impervious surfaces by forest land and water bodies may have a cooling contribution of −0.85 °C to RLST. Furthermore, based on the standardized scale (10%) of LULC changes, the conversion of forest land into impervious surfaces contributed 1% compared to back conversion by −0.2%. The positive contribution to UHI due to the transformation of a natural surface to the human-made surface was found higher than the negative (cooler) contribution due to continued anthropogenic activities. The information will be useful for urban managers and decision makers in land-use planning to control the soaring surface temperature for a comfortable living environment and sustainable cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.