Bulk-heterojunction (BHJ) polymer solar cells have received a great deal of attention mainly due to the possibility of higher power conversion efficiency for photovoltaic applications. Therefore, in this study, relatively novel polymer BHJ solar cells are proposed (ITO/ETL/PTB7:PC70BM/PEDOT:PSS/Au) with various electron transport layers (ETL) such as zinc oxysulfide (Zn(O,S)), zinc selenide (ZnSe), and poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] dibromide (PFN-Br). Here, each ETL material is selected based on the energy bandgap compatibility with ITO as well as the PTB7:PC70BM active layer and is based on other physical properties, which are generally required for efficient photovoltaic responses. Each proposed device is comprehensively optimized and then photovoltaic responses are simulated and compared using the software SCAPS-1D. It was observed that the ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au device offered the highest power-conversion efficiency of up to 17.15% with an open-circuit voltage of 0.85 volts, a short-circuit current of 28.23 mA/cm2, and a fill factor of 70.69%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.