Non-technical losses (NTLs) have been a major concern for power distribution companies (PDCs). Billions of dollars are lost each year due to fraud in billing, metering, and illegal consumer activities. Various studies have explored different methodologies for efficiently identifying fraudster consumers. This study proposes a new approach for NTL detection in PDCs by using the ensemble bagged tree (EBT) algorithm. The bagged tree is an ensemble of many decision trees which considerably improves the classification performance of many individual decision trees by combining their predictions to reach a final decision. This approach relies on consumer energy usage data to identify any abnormality in consumption which could be associated with NTL behavior. The key motive of the current study is to provide assistance to the Multan Electric Power Company (MEPCO) in Punjab, Pakistan for its campaign against energy stealers. The model developed in this study generates the list of suspicious consumers with irregularities in consumption data to be further examined on-site. The accuracy of the EBT algorithm for NTL detection is found to be 93.1%, which is considerably higher compared to conventional techniques such as support vector machine (SVM), k-th nearest neighbor (KNN), decision trees (DT), and random forest (RF) algorithm.
Electricity theft and fraud in energy consumption are two of the major issues for power distribution companies (PDCs) for many years. PDCs around the world are trying different methodologies for detecting electricity theft. The traditional methods for non-technical losses (NTLs) detection such as onsite inspection and reward and penalty policy have lost their place in the modern era because of their ineffective and time-consuming mechanism. With the advancement in the field of Artificial Intelligence (AI), newer and efficient NTL detection methods have been proposed by different researchers working in the field of data mining and AI. The AI-based NTL detection methods are superior to the conventional methods in terms of accuracy, efficiency, time-consumption, precision, and labor required. The importance of such AI-based NTL detection methods can be judged by looking at the growing trend toward the increasing number of research articles on this important development. However, the authors felt the lack of a comprehensive study that can provide a one-stop source of information on these AI-based NTL methods and hence became the motivation for carrying out this comprehensive review on this significant field of science. This article systematically reviews and classifies the methods explored for NTL detection in recent literature, along with their benefits and limitations. For accomplishing the mentioned objective, the opted research articles for the review are classified based on algorithms used, features extracted, and metrics used for evaluation. Furthermore, a summary of different types of algorithms used for NTL detection is provided along with their applications in the studied field of research. Lastly, a comparison among the major NTL categories, i.e., data-based, network-based, and hybrid methods, is provided on the basis of their performance, expenses, and response time. It is expected that this comprehensive study will provide a one-stop source of information for all the new researchers and the experts working in the mentioned area of research.
Smart city adoption and deployment has taken the centre stage worldwide with its realisation clearly hinged on energy efficiency, but its planning is threatened by the vulnerability of smart grids (SGs). Adversaries launch attacks with various motives, but the rampaging electricity theft menace is causing major concerns to SGs deployments and consequently, energy efficiency. Smart electricity meters deployments via the advanced metering infrastructure present promising solutions and even greater potential as it provides adequate data for analytical inferences for achieving proactive measures against various cyberattacks. This study suggests the sources of threats as the first step of such proactive measures of curbing electricity thefts. It provides a framework for monitoring, identifying and curbing the threats based on factors indicative of electricity thefts in a smart utility network. The proposed framework basically focuses on these symptoms of the identified threats indicative of possible electricity theft occurrence to decide on preventing thefts. This study gives a useful background to smart city planners in realising a more reliable, robust and secured energy management scheme required for a sustainable city.
Electricity fraud in billing are the primary concerns for Distribution System Operators (DSO). It is estimated that billions of dollars are wasted annually due to these illegal activities. DSOs around the world, especially in underdeveloped countries, still utilize conventional time consuming and inefficient methods for Non-Technical Loss (NTL) detection. This research work attempts to solve the mentioned problem by developing an efficient energy theft detection model in order to identify the fraudster customers in a power distribution system. The key motivation for the present study is to assist the DSOs in their fight against energy theft. The proposed computational model initially utilizes a set of distinct features extracted from the monthly consumers’ consumption data, obtained from Multan Electric Power Company (MEPCO) Pakistan, to segregate the honest and the fraudulent customers. The Pearson’s chi-square feature selection algorithm is adopted to select the most relevant features among the extracted ones. Finally, the Boosted C5.0 Decision Tree (DT) algorithm is used to classify the honest and the fraudster consumers based on the outcomes of the selected features. To validate the superiority of the proposed NTL detection approach, its performance is matched with that of few state-of-the-art machine learning algorithms (one of most exciting recent technologies in Artificial Intelligence), like Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Extreme Gradient Bossting (XGBoost). The proposed NTL detection method provides an accuracy of 94.6%, Sensitivity of 78.1%, Specificity of 98.2%, F1 score 84.9% and Precision of 93.2% which are significantly higher than that of the same for the above-mentioned algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.