Temperature and humidity monitoring is an integral aspect of human lives and has several applications ranging from greenhouses, laboratories, food industries, server rooms, data centers, and so on. However, the primary technologies that drive these systems suffer from numerous drawbacks such as deployment cost, coverage, and power consumption. This paper aims to employ new and affordable technology, namely low power wide area networks, to implement a temperature and humidity monitoring system (THMS) due to their low cost, low power consumption, and long range in data transmission. A LoRa-based THMS using a Raspberry Pi 3 B+ gateway with a single channel packet forwarder and an Arduino UNO end device with a DHT11 sensor was designed and implemented. After registering the gateway and the end device on The Things Network (TTN), temperature and humidity values of 22.0℃ and 33.0% were recorded by the Arduino serial monitor and the TTN application server. The above implementation clearly shows that sensor values can be effectively transmitted using LoRa and LoRaWAN over long distances with minimal power consumption.
Nowadays, the number of internet of things (IoT) connected devices continues to increase exponentially. However, the core underlying wireless network technologies that enable IoT devices to achieve such growth and wide applications face numerous challenging deployment requirements such as operating range, power consumption, and cost. Low-power wide-area network (LPWAN) technologies enable long-distance, low-power, and low data transmission at a low cost. These new wireless technologies shape the IoT ecosystem due to their wide applications. This study aims to review the various features and analyze the performances of the leading LPWANs, namely LoRa, SigFox, NB-IoT, and Weightless. Initially, precise descriptions of their underlying technologies and various applications were provided. Then, several challenges facing the LPWANs and potential solutions were outlined. Finally, the study analyzed their performance against several specifications, including frequency range, Bandwidth, Modulation, and so on. The outcome shows that these technologies are more efficient than the short and medium-range IoT technologies, particularly regarding power, range, and cost. The study’s findings are hoped to provide a guide and eliminate LPWAN technology selection issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.