Exoskeleton as a wearable robotic machine has a huge potential to be used in medical, industrial, civilian and military field as it can increase the user's strength and endurance. The scope of this paper covers three major engineering fields which are mechanical, electronic and programming engineering. Design of the physical arm exoskeleton structure, actuator controller, and the microcontroller programming are included in this paper. A cost effective liner actuator which is able to generate large torque is used in the design. For the movement capturing part, two low-cost force sensitive resistors which are able to provide enough accuracy required to detect user motion are used. A linear actuator which can provide sufficient thrust and will not consume any power at any stationary position is chosen to drive the exoskeleton and for power saving purpose. The design arm exoskeleton has been tested and it is able to react according to the user arm movement and provide force to assist user in carrying heavy loads.
Jebel Rawdah is a west-northwest to east-southeast trending, post-obduction fold located at the western edge of the Hatta Zone of the Northern Oman Mountains. The main syncline plunges about 5 kilometers to the northwest and it is flanked to the west by a minor anticline. The outcrops in the area consist of: (1) allochthonous Semail Ophiolite, consisting of slices of oceanic crust and upper mantle, together with the Haybi Complex of volcanic rocks and associated metamorphics; (2) the parautochthonous Sumeini Group consisting of shelf edge and slope carbonates and clastics; and (3) the post-obduction neoautochthonous clastics and carbonates of the Qahlah, Simsima and Muthaymimah formations (Maastrichtian to Early Tertiary).
Two stages of folding were detected in the Jebel Rawdah area. The older folds affect the allochthonous rocks and result from shearing deformation along the westward extension of the Hatta Zone. The younger deformation is manifested in drape folds in the neoautochthonous rocks which was caused by differential vertical movements of fault blocks in the underlying allochthonous rocks. Three sets of faults were observed: (1) northwest-southeast trending vertical to steeply-dipping scissor faults; (b) reverse faults which form flower structures; and (c) northeast-southwest trending normal faults.
Field observations, biostratigraphic studies and petrographic examination suggest three stages in the development of the stratigraphic units in Jebel Rawdah. The first stage occurred during the Early Maastrichtian when the Oman Mountains emerged and were subsequently exposed to subaerial erosion. In the second stage a transgression occurred during the gradual subsidence of the area which led to the deposition of the Qahlah Formation in a fluviatile to shallow-marine environment, and the overlying Simsima in a shallow shelf setting. In the final Tertiary stage the Muthaymimah Formation was deposited in a subsiding basin and slope setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.