The rheological behavior under pressure‐driven shear flow was studied using binary blends with a sea‐island structure. The addition of a low‐viscosity dispersion having a high interfacial tension with the continuous phase greatly reduces the shear viscosity, for example, the addition of atactic polystyrene (PS) with a low viscosity to isotactic polypropylene (PP) and the addition of PP with a low viscosity to PS. The interfacial slippage occurs because of the poor adhesive strength with the enlarged interfacial area and is responsible for the viscosity decrease. When the dispersion has a similar viscosity to the continuous phase, the viscosity decrease is barely detected. This is because the deformation of dispersed droplets is restricted, which creates a small interfacial area. The interfacial tension between the continuous and dispersed phases plays a crucial role on the shear viscosity. In the case of PP, the addition of linear low‐density polyethylene with a relatively low interfacial tension to PP has almost no impact on the shear viscosity. This is despite the polyethylene having a low viscosity.
The effects of magnesium salts with various anion species on the structure and properties of a poly(vinyl alcohol) (PVA) film were studied. The glass transition temperature of the PVA film increased following the addition of a magnesium salt. Furthermore, the salt greatly enhanced the modulus and yield stress and reduced the crystallinity of the film. These effects were attributed to the strong ion–dipole interactions between the magnesium salts and the PVA chains. The strength of interaction, i.e., the reduction of segmental motions, depended on the anion species in the following order: Mg(ClO4)2, MgBr2, MgCl2, Mg(CH3COO)2, and MgSO4. The order corresponded to the Hofmeister series, which predicts the ability to break the structure of water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.