The economic value of bioethylene produced from bioethanol dehydration is remarkable due to its extensive usage in the petrochemical industry. Bioethylene is produced through several routes, such as steam cracking of hydrocarbons from fossil fuel and dehydration of bioethanol, which can be produced through fermentation processes using renewable substrates such as glucose and starch. The rise in oil prices, environmental issues due to toxic emissions caused by the combustion of fossil fuel and depletion of fossil fuel resources have led a demand for an alternative pathway to produce green ethylene. One of the abundant alternative renewable sources for bioethanol production is biomass. Bioethanol produced from biomass is alleged to be a competitive alternative to bioethylene production as it is environmentally friendly and economical. In recent years, many studies have investigated catalysts and new reaction engineering pathways to enhance the bioethylene yield and to lower reaction temperature to drive the technology toward economic feasibility and practicality. This paper critically reviews bioethylene production from bioethanol in the presence of different catalysts, reaction conditions and reactor technologies to achieve a higher yield and selectivity of ethylene. Techno-economic and environmental assessments are performed to further development and commercialization. Finally, key issues and perspectives that require utmost attention to facilitate global penetration of technology are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.